Citation: | LIU Zhilin, WANG Xiaoming, LI Wenbin, YAO Wenjin, SONG Meili. Numerical and experimental study of an ogival projectile vertical perforating a medium thickness concrete target[J]. Explosion And Shock Waves, 2018, 38(5): 1083-1090. doi: 10.11883/bzycj-2017-0078 |
[1] |
文鹤鸣.混凝土靶板冲击响应的经验公式[J].爆炸与冲击, 2003, 23(3):267-274. doi: 10.3321/j.issn:1001-1455.2003.03.014
WEN Heming. Empirical equations for the impact response of concrete targets[J]. Explosion and Shock Waves, 2003, 23(3):267-274. doi: 10.3321/j.issn:1001-1455.2003.03.014
|
[2] |
HANCHAK S J, FORRESTAL M J, YOUNG E R, et al. Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) unconfined compressive strengths[J]. International Journal of Impact Engineering, 1992, 12(12):1-7. http://cn.bing.com/academic/profile?id=9f03befe241a1ac9be6d5957563e031a&encoded=0&v=paper_preview&mkt=zh-cn
|
[3] |
YANKELEVSKY D Z. Local response of concrete slabs to low velocity missile impact[J]. International Journal of Impact Engineering, 1997, 19(4):331-343. doi: 10.1016/S0734-743X(96)00041-3
|
[4] |
DANCYGIER A N. Rear face damage of normal and high-strength concrete elements caused by hard projectile impact[J]. Aci Structural Journal, 1998, 95(3):291-304. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ025002989
|
[5] |
葛涛, 刘保荣, 王明洋.弹体侵彻与贯穿有限厚度混凝土靶体的力学特性[J].爆炸与冲击, 2010, 30(2):159-163. http://www.bzycj.cn/CN/abstract/abstract8380.shtml
GE Tao, LIU Baorong, WANG Mingyang. Penetration and perforation of concrete targets with finite thickness by projectiles[J]. Explosion and Shock Waves, 2010, 30(2):159-163. http://www.bzycj.cn/CN/abstract/abstract8380.shtml
|
[6] |
HOLMQUIST T J, JOHNSON G R. A computational constitutive model for glass subjected to large strains, high strain rates and high pressures[J]. Journal of Applied Mechanics, 2011, 78(5):051003. doi: 10.1115/1.4004326
|
[7] |
RIEDEL W, THOMA K, HIERMAIER S, et al. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes[R]. 1999.
|
[8] |
张若棋, 丁育青, 汤文辉, 等.混凝土HJC、RHT本构模型的失效强度参数[J].高压物理学报, 2011, 25(1):15-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7151809
ZHANG Ruoqi, DING Yuqing, TANG Wenhui, et al. The failure strength parameters of HJC and RHT concrete constitutive models[J]. Chinese Journal of High Pressure Physics, 2011, 25(1):15-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7151809
|
[9] |
林华令, 丁育青, 汤文辉.混凝土侵彻数值模拟的影响因素[J].爆炸与冲击, 2013, 33(4):425-429. doi: 10.3969/j.issn.1001-1455.2013.04.015
LIN Hualing, DING Yuqing, TANG Wenhui. Factors influencing numerical simulation of concrete penetration[J]. Explosion and Shock Waves, 2013, 33(4):425-429. doi: 10.3969/j.issn.1001-1455.2013.04.015
|
[10] |
LEPPÄNEN J. Concrete subjected to projectile and fragment impacts:Modelling of crack softening and strain rate dependency in tension[J]. International Journal of Impact Engineering, 2006, 32(11):1828-1841. doi: 10.1016/j.ijimpeng.2005.06.005
|
[11] |
ROSENBERG Z, DEKEL E. The deep penetration of concrete targets by rigid rods-revisited[J]. International Journal of Protective Structures, 2010, 1(1):125-144. doi: 10.1260/2041-4196.1.1.125
|
[12] |
CHEN Xiaowei, LI Jicheng. Analysis on the resistive force in penetration of a rigid projectile[J]. Defence Technology, 2014, 10(3):285-293. doi: 10.1016/j.dt.2014.06.007
|
[13] |
FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets[J]. International Journal of Impact Engineering, 1992, 15(4):395-405. http://cn.bing.com/academic/profile?id=1564dbbac134b4b6b0dbf13003ad9c56&encoded=0&v=paper_preview&mkt=zh-cn
|