Citation: | WU Junfeng, ZOU Shikun, ZHANG Yongkang, SUN Guifang, NI Zhonghua, CAO Ziwen, CHE Zhigang. Spall of Ti17 alloy induced by laser shock peening with multiple shots[J]. Explosion And Shock Waves, 2018, 38(5): 1091-1098. doi: 10.11883/bzycj-2017-0082 |
[1] |
ZHANG Y K, LU J Z, REN X D, et al. Effect of laser shock processing on the mechanical properties and fatigue lives of the turbojet engine blades manufactured by LY2 aluminum alloy[J]. Materials and Design, 2009, 30(5):1697-1703. DOI: 10.1016/j.matdes.2008.07.017.
|
[2] |
PEYRE P, FABBRO R, MERRIEN P, et al. Laser shock processing of aluminium alloys:Application to high cycle fatigue behaviour[J]. Materials Science and Engineering:A, 1996, 210(1/2):102-113. DOI: 10.1016/0921-5093(95)10084-9.
|
[3] |
BERGANT Z, TRDAN U, GRUM J. Effects of laser shock processing on high cycle fatigue crack growth rate and fracture toughness of aluminium alloy 6082-T651[J]. International Journal of Fatigue, 2016, 87:444-455. DOI: 10.1016/j.ijfatigue.2016.02.027.
|
[4] |
LU J Z, QI H, LUO K Y, et al. Corrosion behaviour of AISI 304 stainless steel subjected to massive laser shock peening impacts with different pulse energies[J]. Corrosion Science, 2014, 80:53-59. DOI: 10.1016/j.corsci.2013.11.003.
|
[5] |
LUO K Y, WANG C Y, LI Y M, et al. Effects of laser shock peening and groove spacing on the wear behavior of non-smooth surface fabricated by laser surface texturing[J]. Applied Surface Science, 2014, 313:600-606. DOI: 10.1016/j.apsusc.2014.06.029.
|
[6] |
SPANRAD S, TONG J. Characterization of foreign object damage (FOD) and early fatigue crack growth in laser shock peened Ti-6AL-4V aerofoil specimens[J]. Procedia Engineering, 2011, 528(4):2128-2136. DOI: 10.1016/j.proeng.2010.03.188.
|
[7] |
罗新民, 马辉, 张静文, 等.激光冲击中的"应变屏蔽"和"约束击穿"[J].材料导报, 2010, 24(5):11-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cldb201005003
LUO Xinmin, MA Hui, ZHANG Jingwen, et al. "Strain-screening" and "constraint-breakdown" in laser shock processing[J]. Materials Review, 2010, 24(5):11-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cldb201005003
|
[8] |
LIU Q, DING K, YE L, et al. Spallation-like phenomenon induced by laser shock peening surface treatment on 7050 aluminum alloy[C]//ATRENS A, BOLAND J N. Structural integrity and fracture: Proceedings of the International Conference, SIF 2004. Brisbane, Australia: School of Mechanical and Mining Engineering Publications, 2004: 235-240. DOI: 10.1142/9789812777973_0024.
|
[9] |
LIU Q, YANG C H, DING K, et al. The effect of laser power density on the fatigue life of laser-shock-peened 7050 aluminium alloy[J]. Fatigue and Fracture of Engineering Materials and Structures, 2007, 30(11):1110-1124. DOI: 10.1111/j.1460-2695.2007.01180.x.
|
[10] |
JARMAKANI H, MADDOX B, WEI C T, et al. Laser shock-induced spalling and fragmentation in vanadium[J]. Acta Materialia, 2010, 58(14):4604-4628. DOI: 10.1016/j.actamat.2010.04.027.
|
[11] |
LESCOUTE E, DE RESSEGUIER T, CHEVALIER J M, et al. Ejection of spalled layers from laser shock-loaded metals[J]. Journal of Applied Physics, 2010, 108(9):93510. DOI: 10.1063/1.3500317.
|
[12] |
DALTON D A, BREWER J L, BERNSTEIN A C, et al. Laser-induced spallation of aluminum and Al alloys at strain rates above 2×106 s-1[J]. Journal of Applied Physics, 2008, 104(1):13526. DOI: 10.1063/1.2949276.
|
[13] |
翟少栋, 李英华, 彭建祥, 等.平面碰撞与强激光加载下金属铝的层裂行为[J].爆炸与冲击, 2016, 36(6):767-773. DOI: 10.11883/1001-1455(2016)06-0767-07.
ZHAI Shaodong, LI Yinghua, PENG Jianxiang, et al. Spall behavior of pure aluminum under plate-impact and high energy laser shock loadings[J]. Explosion and Shock Waves, 2016, 36(6):767-773. DOI: 10.11883/1001-1455(2016)06-0767-07.
|
[14] |
TYLER C, MILLETT J C F, BOURNE N K. Spallation in Ti-6Al-4V:Stress measurements and recovery[J]. AIP Conference Proceedings, 2006, 845(1):674-677. DOI: 10.1063/1.2263412.
|
[15] |
BOIDIN X, CHEVRIER P, KLEPACZKO J R, et al. Identification of damage mechanism and validation of a fracture model based on mesoscale approach in spalling of titanium alloy[J]. International Journal of Solids and Structures, 2006, 43(14/15):4595-4615. DOI: 10.1016/j.ijsolstr.2005.06.039.
|
[16] |
FABBRO R, FOURNIER J, BALLARD P, et al. Physical study of laser-produced plasma in confined geometry[J]. Journal of Applied Physics, 1990, 68(2):775-784. DOI: 10.1063/1.346783.
|
[17] |
GE M Z, XIANG J Y. Effect of laser shock peening on microstructure and fatigue crack growth rate of AZ31B magnesium alloy[J]. Journal of Alloys and Compounds, 2016, 680:544-552. DOI: 10.1016/j.jallcom.2016.04.179.
|
[18] |
张建泉, 陈荣华, 强希文, 等.激光产生的激波在靶材中的传播及层裂效应[J].中国激光, 2002, 29(3):197-200. DOI: 10.3321/j.issn:0258-7025.2002.03.002.
ZHANG Jianquan, CHEN Ronghua, QIANG Xiwen, et al. Propagation and spall effect of shock wave induced by laser in targets[J]. Chinese Journal of Lasers, 2002, 29(3):197-200. DOI: 10.3321/j.issn:0258-7025.2002.03.002.
|
[19] |
CELLARD C, RETRAINT D, FRANÇOIS M, et al. Laser shock peening of Ti-17 titanium alloy:Influence of process parameters[J]. Materials Science and Engineering:A, 2012, 532(1):362-372. DOI: 10.1016/j.msea.2011.10.104.
|
[20] |
HERASYMCHUK O M, KONONUCHENKO O V, MARKOVSKY P E, et al. Calculating the fatigue life of smooth specimens of two-phase titanium alloys subject to symmetric uniaxial cyclic load of constant amplitude[J]. International Journal of Fatigue, 2016, 83:313-322. DOI: 10.1016/j.ijfatigue.2015.11.002.
|
[1] | LIU Jinchun, WANG Yuying, SUN Ni. Numerical simulation of dynamic response of reinforced masonry wall strengthened with polyurea under gas explosion[J]. Explosion And Shock Waves, 2024, 44(10): 101405. doi: 10.11883/bzycj-2024-0077 |
[2] | ZHANG Suoshuo, NIE Jianxin, ZHANG Jian, SUN Xiaole, GUO Xueyong, ZHANG Tao. Sympathetic detonation of explosive charge in confined space and its protection[J]. Explosion And Shock Waves, 2023, 43(8): 085101. doi: 10.11883/bzycj-2022-0456 |
[3] | ZHAO Xiaohua, LIU Shucan, FANG Hongyuan, SUN Jinshan, SHI Mingsheng. Protective effect of polymer layer on reinforced concrete slabs under an underwater contact explosion[J]. Explosion And Shock Waves, 2023, 43(12): 125102. doi: 10.11883/bzycj-2023-0033 |
[4] | MA Yinliang, ZHANG Pan, CHENG Yuansheng, LIU Jun. Design of corner connection structures of box-type cabins subjected to internal blast loading[J]. Explosion And Shock Waves, 2022, 42(12): 125102. doi: 10.11883/bzycj-2021-0437 |
[5] | ZHENG Zhihao, REN Huiqi, LONG Zhilin, GUO Ruiqi, CAI Yang, LI Zhijian. A study on impact compression mechanical properties of PP/CF reinforced coral sand cement-based composites[J]. Explosion And Shock Waves, 2022, 42(7): 073104. doi: 10.11883/bzycj-2021-0297 |
[6] | YU Qing, ZHANG Hui, YANG Ruizhi. Numerical simulation of the shock wave generated by electro-hydraulic effect based on LS-DYNA[J]. Explosion And Shock Waves, 2022, 42(2): 024201. doi: 10.11883/bzycj-2021-0214 |
[7] | WANG Ziguo, WANG Songtao, KONG Xiangzhen, SUN Yuyan. Anti-penetration capability of pre-stressed confined concrete with truncated cone[J]. Explosion And Shock Waves, 2022, 42(10): 103303. doi: 10.11883/bzycj-2022-0030 |
[8] | SONG Guangming, LI Ming, WU Qiang, GONG Zizheng, ZHANG Pinliang, CAO Yan. Debris cloud characteristics of graded-impedance shields under hypervelocity impact[J]. Explosion And Shock Waves, 2021, 41(2): 021405. doi: 10.11883/bzycj-2020-0299 |
[9] | WU Kai, WANG Xianhui, ZHOU Yunbo, BI Zheng, LI Mingxing. Optimization of vehicle protection components based on reliability[J]. Explosion And Shock Waves, 2021, 41(3): 035101. doi: 10.11883/bzycj-2020-0126 |
[10] | SONG Ge, LONG Yuan, ZHONG Mingshou, WANG min, WU Jianyu. Similarity relations of underwater explosion in centrifuge and pressurizing vessels[J]. Explosion And Shock Waves, 2019, 39(2): 024102. doi: 10.11883/bzycj-2017-0321 |
[11] | ZHANG Yongkang, LI Yulong, TANG Zhongbin, YANG Hong, XU Hai. Dynamic response of aluminum-foam-based sandwich panelsunder hailstone impact[J]. Explosion And Shock Waves, 2018, 38(2): 373-380. doi: 10.11883/bzycj-2016-0232 |
[12] | Li Rujiang, Chai Yanjun, Han Hongwei, Liu Tiansheng. Protective performance of explosive reactive armor with composite rubber armor as front or back plate[J]. Explosion And Shock Waves, 2017, 37(4): 637-642. doi: 10.11883/1001-1455(2017)04-0637-06 |
[13] | Chen Mingsheng, Chun Hua, Li Jianping. Simulation of blast waves interaction for multiple cloud explosion[J]. Explosion And Shock Waves, 2016, 36(1): 81-86. doi: 10.11883/1001-1455(2016)01-0081-06 |
[14] | Li Li-sha, Du Jian-guo, Zhang Hong-hai, Xie Qing-liang. Numerical simulation of damage of brick wall subjected to blast shock vibration[J]. Explosion And Shock Waves, 2015, 35(4): 459-466. doi: 10.11883/1001-1455(2015)04-0459-08 |
[15] | Li Ru-jiang, Han Hong-wei, Sun Su-jie, Liu Tian-sheng. Ballistic resistance capabilities of explosive reactive armors encapsulated by ceramic layers[J]. Explosion And Shock Waves, 2014, 34(1): 47-51. doi: 10.11883/1001-1455(2014)01-0047-05 |
[16] | Zhu Jun, Yang Jian-hua, Lu Wen-bo, Chen Ming, Yan Peng. Influences of blasting vibration on the sidewall of underground tunnel[J]. Explosion And Shock Waves, 2014, 34(2): 153-160. doi: 10.11883/1001-1455(2014)02-0153-08 |
[17] | WuHe-xiang, LiuYing. Influencesofdensitygradientvariationonmechanicalperformances ofdensity-gradedhoneycombmaterials[J]. Explosion And Shock Waves, 2013, 33(2): 163-168. doi: 10.11883/1001-1455(2013)02-0163-06 |
[18] | LAI Ming, FENG Shun-shan, HUANG Guang-yan, BIAN Jiang-nan. Damageofdifferentreinforcedstructures subjectedtounderwatercontactexplosion[J]. Explosion And Shock Waves, 2012, 32(6): 599-604. doi: 10.11883/1001-1455(2012)06-0599-05 |
[19] | TIAN Yu-bin, LI Zhao, ZHANG Chun-wei. Dynamicresponseofreinforcedmasonrystructureunderblastload[J]. Explosion And Shock Waves, 2012, 32(6): 658-662. doi: 10.11883/1001-1455(2012)06-0658-05 |
[20] | CHEN Yong, HUA Hong-xing, WANG Yu, GOU Hou-yu. Protective effects of hyper-elastic sandwiches coated onto metal boxes subjected to underwater explosion[J]. Explosion And Shock Waves, 2009, 29(4): 395-400. doi: 10.11883/1001-1455(2009)04-0395-06 |
1. | 杜明燃,陈智凡,陆少锋,梁进,李基锐,王尹军,王天照,陈宇航. 供风量与气泡帷幕层数协同下水中爆炸冲击波的削波效果. 高压物理学报. 2024(01): 165-173 . ![]() | |
2. | 郭军,米鑫程,冯国瑞,白锦文,文晓泽,朱林俊,王子,皇文博. 基于液电效应的高压电脉冲岩体致裂特征及机理. 煤炭学报. 2024(05): 2270-2282 . ![]() | |
3. | 农志祥,吴红波,王尹军,李基锐,马成帅,叶风明,徐君. 多层气泡帷幕对水下爆炸防护能力的研究. 工程爆破. 2024(03): 136-142 . ![]() | |
4. | 陆少锋,吴红波,马成帅,王尹军,李基锐. 不同孔间距的气泡帷幕对水中冲击波衰减特性的影响. 爆破器材. 2024(04): 52-57 . ![]() | |
5. | 范怀斌,陆少锋,莫崇勋,刁约,覃才勇,黄国松. 多层差异性气泡帷幕对水下爆破冲击波的衰减效应的试验研究. 爆破器材. 2023(02): 48-55 . ![]() | |
6. | 范怀斌,陆少锋,程扬帆,覃才勇,刁约. 组合帷幕阻波帘对水下冲击波的防护特性分析. 科学技术与工程. 2023(17): 7520-7526 . ![]() | |
7. | 陆浩然,孙海亮,马强,李海涛,于丽晶,马明辉,孙宇新. 水下环境爆炸对方形水池冲击载荷数值模拟研究. 强度与环境. 2022(05): 12-19 . ![]() | |
8. | 司剑峰,钟冬望,李雷斌. 基于气泡形态影响的水下气幕对冲击波衰减效果分析. 爆炸与冲击. 2021(07): 71-79 . ![]() |