Citation: | WU Junfeng, ZOU Shikun, ZHANG Yongkang, SUN Guifang, NI Zhonghua, CAO Ziwen, CHE Zhigang. Spall of Ti17 alloy induced by laser shock peening with multiple shots[J]. Explosion And Shock Waves, 2018, 38(5): 1091-1098. doi: 10.11883/bzycj-2017-0082 |
[1] |
ZHANG Y K, LU J Z, REN X D, et al. Effect of laser shock processing on the mechanical properties and fatigue lives of the turbojet engine blades manufactured by LY2 aluminum alloy[J]. Materials and Design, 2009, 30(5):1697-1703. DOI: 10.1016/j.matdes.2008.07.017.
|
[2] |
PEYRE P, FABBRO R, MERRIEN P, et al. Laser shock processing of aluminium alloys:Application to high cycle fatigue behaviour[J]. Materials Science and Engineering:A, 1996, 210(1/2):102-113. DOI: 10.1016/0921-5093(95)10084-9.
|
[3] |
BERGANT Z, TRDAN U, GRUM J. Effects of laser shock processing on high cycle fatigue crack growth rate and fracture toughness of aluminium alloy 6082-T651[J]. International Journal of Fatigue, 2016, 87:444-455. DOI: 10.1016/j.ijfatigue.2016.02.027.
|
[4] |
LU J Z, QI H, LUO K Y, et al. Corrosion behaviour of AISI 304 stainless steel subjected to massive laser shock peening impacts with different pulse energies[J]. Corrosion Science, 2014, 80:53-59. DOI: 10.1016/j.corsci.2013.11.003.
|
[5] |
LUO K Y, WANG C Y, LI Y M, et al. Effects of laser shock peening and groove spacing on the wear behavior of non-smooth surface fabricated by laser surface texturing[J]. Applied Surface Science, 2014, 313:600-606. DOI: 10.1016/j.apsusc.2014.06.029.
|
[6] |
SPANRAD S, TONG J. Characterization of foreign object damage (FOD) and early fatigue crack growth in laser shock peened Ti-6AL-4V aerofoil specimens[J]. Procedia Engineering, 2011, 528(4):2128-2136. DOI: 10.1016/j.proeng.2010.03.188.
|
[7] |
罗新民, 马辉, 张静文, 等.激光冲击中的"应变屏蔽"和"约束击穿"[J].材料导报, 2010, 24(5):11-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cldb201005003
LUO Xinmin, MA Hui, ZHANG Jingwen, et al. "Strain-screening" and "constraint-breakdown" in laser shock processing[J]. Materials Review, 2010, 24(5):11-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cldb201005003
|
[8] |
LIU Q, DING K, YE L, et al. Spallation-like phenomenon induced by laser shock peening surface treatment on 7050 aluminum alloy[C]//ATRENS A, BOLAND J N. Structural integrity and fracture: Proceedings of the International Conference, SIF 2004. Brisbane, Australia: School of Mechanical and Mining Engineering Publications, 2004: 235-240. DOI: 10.1142/9789812777973_0024.
|
[9] |
LIU Q, YANG C H, DING K, et al. The effect of laser power density on the fatigue life of laser-shock-peened 7050 aluminium alloy[J]. Fatigue and Fracture of Engineering Materials and Structures, 2007, 30(11):1110-1124. DOI: 10.1111/j.1460-2695.2007.01180.x.
|
[10] |
JARMAKANI H, MADDOX B, WEI C T, et al. Laser shock-induced spalling and fragmentation in vanadium[J]. Acta Materialia, 2010, 58(14):4604-4628. DOI: 10.1016/j.actamat.2010.04.027.
|
[11] |
LESCOUTE E, DE RESSEGUIER T, CHEVALIER J M, et al. Ejection of spalled layers from laser shock-loaded metals[J]. Journal of Applied Physics, 2010, 108(9):93510. DOI: 10.1063/1.3500317.
|
[12] |
DALTON D A, BREWER J L, BERNSTEIN A C, et al. Laser-induced spallation of aluminum and Al alloys at strain rates above 2×106 s-1[J]. Journal of Applied Physics, 2008, 104(1):13526. DOI: 10.1063/1.2949276.
|
[13] |
翟少栋, 李英华, 彭建祥, 等.平面碰撞与强激光加载下金属铝的层裂行为[J].爆炸与冲击, 2016, 36(6):767-773. DOI: 10.11883/1001-1455(2016)06-0767-07.
ZHAI Shaodong, LI Yinghua, PENG Jianxiang, et al. Spall behavior of pure aluminum under plate-impact and high energy laser shock loadings[J]. Explosion and Shock Waves, 2016, 36(6):767-773. DOI: 10.11883/1001-1455(2016)06-0767-07.
|
[14] |
TYLER C, MILLETT J C F, BOURNE N K. Spallation in Ti-6Al-4V:Stress measurements and recovery[J]. AIP Conference Proceedings, 2006, 845(1):674-677. DOI: 10.1063/1.2263412.
|
[15] |
BOIDIN X, CHEVRIER P, KLEPACZKO J R, et al. Identification of damage mechanism and validation of a fracture model based on mesoscale approach in spalling of titanium alloy[J]. International Journal of Solids and Structures, 2006, 43(14/15):4595-4615. DOI: 10.1016/j.ijsolstr.2005.06.039.
|
[16] |
FABBRO R, FOURNIER J, BALLARD P, et al. Physical study of laser-produced plasma in confined geometry[J]. Journal of Applied Physics, 1990, 68(2):775-784. DOI: 10.1063/1.346783.
|
[17] |
GE M Z, XIANG J Y. Effect of laser shock peening on microstructure and fatigue crack growth rate of AZ31B magnesium alloy[J]. Journal of Alloys and Compounds, 2016, 680:544-552. DOI: 10.1016/j.jallcom.2016.04.179.
|
[18] |
张建泉, 陈荣华, 强希文, 等.激光产生的激波在靶材中的传播及层裂效应[J].中国激光, 2002, 29(3):197-200. DOI: 10.3321/j.issn:0258-7025.2002.03.002.
ZHANG Jianquan, CHEN Ronghua, QIANG Xiwen, et al. Propagation and spall effect of shock wave induced by laser in targets[J]. Chinese Journal of Lasers, 2002, 29(3):197-200. DOI: 10.3321/j.issn:0258-7025.2002.03.002.
|
[19] |
CELLARD C, RETRAINT D, FRANÇOIS M, et al. Laser shock peening of Ti-17 titanium alloy:Influence of process parameters[J]. Materials Science and Engineering:A, 2012, 532(1):362-372. DOI: 10.1016/j.msea.2011.10.104.
|
[20] |
HERASYMCHUK O M, KONONUCHENKO O V, MARKOVSKY P E, et al. Calculating the fatigue life of smooth specimens of two-phase titanium alloys subject to symmetric uniaxial cyclic load of constant amplitude[J]. International Journal of Fatigue, 2016, 83:313-322. DOI: 10.1016/j.ijfatigue.2015.11.002.
|
[1] | LI Guoqiang, MA Gang, GAO Songtao, GUO Dongcai, ZHANG Jiayin. Numerical study on dynamic response and spall damage of filter concrete under impact load[J]. Explosion And Shock Waves, 2023, 43(2): 023201. doi: 10.11883/bzycj-2022-0189 |
[2] | SHI Tongya, LIU Dongsheng, CHEN Wei, XIE Puchu, WANG Xiaofeng, WANG Yonggang. Dynamic tensile behavior and spall fracture of GP1 stainless steel processed by selective laser melting[J]. Explosion And Shock Waves, 2019, 39(7): 073101. doi: 10.11883/bzycj-2019-0015 |
[3] | ZHANG Fengguo, LIU Jun, WANG Pei, HU Xiaomian, ZHOU Hongqiang, SHAO Jianli, FENG Qijing. Multi-spall in ductile metal under triangular impulse loading[J]. Explosion And Shock Waves, 2018, 38(3): 659-664. doi: 10.11883/bzycj-2016-0279 |
[4] | Spall behavior of pure aluminum under plate-impactand high energy laser shock loadings[J]. Explosion And Shock Waves, 2016, 36(6): 767-773. doi: 10.11883/1001-1455(2016)06-0767-07 |
[5] | Zhang Jie, Su Shao-qing, Zheng Yu, Wang Xiao-jun. Application of modified SPH method to numerical simulation of ceramic spallation[J]. Explosion And Shock Waves, 2013, 33(4): 401-407. doi: 10.11883/1001-1455(2013)04-0401-07 |
[6] | ZHANG Lei, HU Shi-sheng, CHEN De-xing, ZHANG Shou-bao, YU Ze-qing, LIU Fei. Spall fracture properties of steel-fiber-reinforced concrete[J]. Explosion And Shock Waves, 2009, 29(2): 119-124. doi: 10.11883/1001-1455(2009)02-0119-06 |
[7] | CHEN Yong-tao, TANG Xiao-jun, LI Qing-zhong, HU Hai-bo, XU Yong-bo. Phase transition and abnormal spallation in pure iron[J]. Explosion And Shock Waves, 2009, 29(6): 637-641. doi: 10.11883/1001-1455(2009)06-0637-05 |
[8] | ZHANG Lei, HU Shi-sheng, CHEN De-xing, ZHANG Shou-bao, YU Ze-qing, LIU Fei. Spall characteristics of concrete materials[J]. Explosion And Shock Waves, 2008, 28(3): 193-199. doi: 10.11883/1001-1455(2008)03-0193-07 |
[9] | CHEN Yong-tao, LI Qing-zhong, HU Hai-bo. Phase transition and spalling behavior of metal with low transition stress under high pressure[J]. Explosion And Shock Waves, 2008, 28(6): 503-506. doi: 10.11883/1001-1455(2008)06-0503-04 |
[10] | WANG Yong-gang, HE Hong-liang. Effect of tensile strain rate on spall fracture in 20 steel[J]. Explosion And Shock Waves, 2007, 27(3): 193-197. doi: 10.11883/1001-1455(2007)03-0193-05 |
[11] | JIANG Song-qing, LIU Wen-tao. Numerical modeling of spall fracture behavior in U-Nb alloys[J]. Explosion And Shock Waves, 2007, 27(6): 481-486. doi: 10.11883/1001-1455(2007)06-0481-06 |
[12] | ZHANG Xin-hua, TANG Zhi-ping, XU Wei-wei, TANG Xiao-jun, ZHENG Hang. Experimental study on characteristics of shock-induced phase transition and spallation in FeMnNi alloy[J]. Explosion And Shock Waves, 2007, 27(2): 103-108. doi: 10.11883/1001-1455(2007)02-0103-06 |
[13] | WANG Yong-gang, HE Hong-liang, CHEN Den-ping, WANG Li-li, JING Fu-qian. Comparison of different spall models for simulating spallation in ductile metals[J]. Explosion And Shock Waves, 2005, 25(5): 467-471. doi: 10.11883/1001-1455(2005)05-0467-05 |
[14] | GUI Yu-lin, LIU Cang-li, WANG Yan-ping, SUN Cheng-wei. The spall fracture mechanism and numerical simulation of no-Co-alloy steel[J]. Explosion And Shock Waves, 2005, 25(2): 183-188. doi: 10.11883/1001-1455(2005)02-0183-06 |
[15] | LI Yong-chi, DONG Jie, HU Xiu-zhang, FAN Shu-qun. Imploding load induced deformation and spallation of thermal-plastic spherical shell of medium thickness[J]. Explosion And Shock Waves, 2005, 25(4): 319-324. doi: 10.11883/1001-1455(2005)04-0319-06 |
1. | 孙汝剑,孟祥峰,姜盎然,曹子文,王新宇,车志刚,吴俊峰,邹世坤. 钛合金叶片模拟件激光冲击诱导层裂行为研究. 航空制造技术. 2023(20): 80-85 . ![]() | |
2. | 乔红超,胡宪亮,赵吉宾,吴嘉俊,孙博宇,陆莹,郭跃彬. 激光冲击强化的影响参数与发展应用. 表面技术. 2019(12): 1-9+53 . ![]() |