Volume 38 Issue 3
Feb.  2018
Turn off MathJax
Article Contents
HAN Lu, HAN Qing, YANG Shuang. Simulation analysis of hydrodynamic ram in an aircraft fuel tank subjected to high-velocity multi-fragment impact[J]. Explosion And Shock Waves, 2018, 38(3): 473-484. doi: 10.11883/bzycj-2017-0230
Citation: HAN Lu, HAN Qing, YANG Shuang. Simulation analysis of hydrodynamic ram in an aircraft fuel tank subjected to high-velocity multi-fragment impact[J]. Explosion And Shock Waves, 2018, 38(3): 473-484. doi: 10.11883/bzycj-2017-0230

Simulation analysis of hydrodynamic ram in an aircraft fuel tank subjected to high-velocity multi-fragment impact

doi: 10.11883/bzycj-2017-0230
  • Received Date: 2017-06-29
  • Rev Recd Date: 2017-09-02
  • Publish Date: 2018-05-25
  • As one of the major damage modes of an aircraft fuel tank, the hydrodynamic ram may cause a catastrophic destroy to the fuel tank structure. In order to analyze the multi-fragment impact on the fuel tank under actual combat circumstance, a validated full-filled fuel tank model under single fragment impact is firstly established. The impact situations of multi-fragment hit at the same time, double fragments hit with different spaces, and double fragments hit at different times are studied by using the finite element analysis software of ANSYS/LS-DYNA. The following parameters are carefully analyzed, including the pressure inside the fuel tank, the fragment velocity decay, the total energy absorbed by the water and the deformation of the fuel tank walls. The results show that, the peak pressure of the fluid in the tank is derived from the shock wave which is produced by the fragment; the superposition effect of pressure is enhanced under multi-fragment impact condition; the tank walls significantly deform with the growth of the number of incident fragments. Moreover, the residual velocity of the incident fragment will be increased by the latish one.
  • loading
  • [1]
    BALL R E. The fundamentals of aircraft combat survivability:Analysis and design[M]. 2nd ed. Reston, Virginia:AIAA Education, 2003:667-668. DOI: 10.2514/4.862519.
    [2]
    VARAS D, ZAERA R, LÓPEZ-PUENTE J. Numerical modelling of the hydrodynamic ram phenomenon[J]. International Journal of Impact Engineering, 2009, 36(3):363-374. DOI: 10.1016/j.ijimpeng.2008.07.020.
    [3]
    刘国繁, 陈照峰, 王永健, 等.飞机油箱水锤效应研究方法及进展[J].航空工程进展, 2014, 5(1):1-6.DOI: 10.16615/j.cnki.1674-8190.2014.01.007.

    LIU Guofan, CHEN Zhaofeng, WANG Yongjian, et.al. Research methods and progress of the hydrodynamic ram effect of aircraft fuel tanks[J]. Advances in Aeronautical Science and Engineering, 2014, 5(1):1-6. DOI: 10.16615/j.cnki.1674-8190.2014.01.007.
    [4]
    BALL R E. Structural response of fluid containing tanks to penetrating projectiles (hydraulic ram): a comparison of experimental and analytical results: NPS-57BP76051[R]. Monterey, California: Naval Postgraduate School, 1976.
    [5]
    PATTERSON J W. Fuel cell pressure loading during hydraulic ram[D]. Monterey, California: Naval Postgraduate School, 1975.
    [6]
    NISHIDA M, TANAKA K. Experimental study of perforation and cracking of water-filled aluminum tubes impacted by steel spheres[J]. International Journal of Impact Engineering, 2006, 32(12):2000-2016. DOI: 10.1016/j.ijimpeng.2005.06.010.
    [7]
    DISIMILE P J, SWANSON L A, TOY N. The hydrodynamic ram pressure generated by spherical projectiles[J]. International Journal of Impact Engineering, 2009, 36(6):821-829. DOI: 10.1016/j.ijimpeng.2008.12.009.
    [8]
    VARAS D, ZAERA R, LÓPEZ-PUENTE J. Experimental study of CFRP fluid-filled tubes subjected to high-velocity impact[J]. Composite Structures, 2011, 93(10):2598-2609. DOI: 10.1016/j.compstruct.2011.04.025.
    [9]
    VARAS D, ZAERA D, LÓPEZ-PUENTE J. Numerical modelling of partially filled aircraft fuel tanks submitted to hydrodynamic ram[J]. Aerospace Science and Technology, 2012, 16(1):19-28. DOI: 10.1016/j.ast.2011.02.003.
    [10]
    VARAS D, LÓPEZ-PUENTE J, ZAERA R. Experimental analysis of fluid-filled aluminum tubes subjected to high-velocity impact[J]. International Journal of Impact Engineering, 2009, 36(1):81-91. DOI: 10.1016/j.ijimpeng.2008.04.006.
    [11]
    SANTINI P, PALMIERI D, MARCHETTI M. Numerical simulation of fluid-structure interaction in aircraft fuel tanks subjected to hydrodynamic ram penetration[C]//1st ICAS Congress. Melbourne, Australia, 1998: ICAS-98-4. 3. 1. DOI: 10.1016/j.ijimpeng.2008.07.020.
    [12]
    JR ANDERSON C E, SHARRON T R, WALKER J D, et al. Simulation and analysis of a 23-mm HEI projectile hydrodynamic ram experiment[J]. International Journal of Impact Engineering, 1999, 22(9):981-997. DOI: 10.1016/S0734-743X(99)00046-9.
    [13]
    SPARKS C E, HINRICHSEN R L, FRIEDMANN D. Comparison and validation of smooth particle hydrodynamics (SPH) and coupled Euler Lagrange (CEL) techniques for modeling hydrodynamic ram[C]//AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. USA, 2013: 2005-2331. DOI: 10.2514/6.2005-2331.
    [14]
    VIGNJEVIC R, DEVUYST T, CAMPBELL J C, et al. Modelling of impact on a fuel tank using smoothed particle hydrodynamics[C]//5th Conference on Dynamics and Control of Systems and Structures in Space (DCSSS). Cambridge, UK, 2002.
    [15]
    李亚智, 陈钢.充液箱体受破片撞击下动态响应的数值模拟[J].机械强度, 2007, 29(1):143-147.DOI: 10.3321/j.issn:1001-9669.

    LI Yazhi, CHEN Gang. Numerical simulation of liquid-filled tank response to projectile impact[J]. Journal of Mechanical Strength, 2007, 29(1):143-147. DOI: 10.3321/j.issn:1001-9669.
    [16]
    陈钢. 高速破片冲击下油箱动态响应的数值模拟[D]. 西安: 西北工业大学, 2005: 36-52. DOI: 10.7666/d.y843974.
    [17]
    AZIZ M R, KUNTJORO W, DAVID N V. Numerical modeling of the ballistic limit in the hydrodynamic ram[J]. Journal Teknologi (Sciences & Engineering), 2015, 76(8):43-47. DOI: 10.11113/jt.v76.5622.
    [18]
    CHEN Long, SONG Bifeng, PEI Yang. Simulation analysis of hydrodynamic ram phenomenon in composite fuel tank to fragment impact[J]. Chinese Science Bulletin, 2011, 56(30):3148-3154. DOI: 10.1109/ICMTMA.2011.631.
    [19]
    HEIMB S, DUWENSEE T, NOGUEIRA A C, et al. Hydrodynamic ram analysis of aircraft fuel tank with different composite T-joint designs[C]//WIT Transactions on the Built Environment on Structures under Shock and Impact, 2014, 141(13): 279-288. DOI: 10.2495/SUSI140241.
    [20]
    BANERJEE A, DHAR S, ACHARYYA S, et al. Determination of Johnson-Cook material and failure model constants and numerical modelling of Charpy impact test of armour steel[J]. Materials Science and Engineering, 2015, 640:200-209. DOI: 10.1016/j.msea.2015.05.073.
    [21]
    李晓杰, 姜力, 赵铮, 等.高速旋转弹头侵彻运动金属薄板的数值模拟[J].爆炸与冲击, 2008, 28(1):57-61.DOI: 10.3321/j.issn:1001-1455.2008.01.010.

    LI Xiaojie, JIANG Li, ZHAO Zheng, et al. Numerical study on penetration of a high-speed-rotating bullet into the moving sheet-metal plate[J]. Explosion and Shock Waves, 2008, 28(1):57-61. DOI: 10.3321/j.issn:1001-1455.2008.01.010.
    [22]
    CORONA E, ORIENT G E. An evaluation of the Johnson-Cook model to simulate puncture of 7075 aluminum plates[R]. Sandia National Laboratories, 2014. DOI: 10.2172/1204105.
    [23]
    TOWNSEND D, PARK N, DEVALL P M. Failure of fluid dilled structures due to high velocity fragment impact[J]. International Journal of Impact Engineering, 2003, 29(1/2/3/4/5/6/7/8/9/10):723-733.DOI: 10.1016/j.ijimpeng.2003.10.019.
    [24]
    CHEN S, CHOU P. Hypervelocity impact of bumper-protected fuel tanks[J]. Journal of Spacecraft and Rockets, 1970, 7(12):1412-1418. DOI: 10.2514/3.30183.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(2)

    Article Metrics

    Article views (5644) PDF downloads(466) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return