Citation: | HAN Lu, HAN Qing, YANG Shuang. Simulation analysis of hydrodynamic ram in an aircraft fuel tank subjected to high-velocity multi-fragment impact[J]. Explosion And Shock Waves, 2018, 38(3): 473-484. doi: 10.11883/bzycj-2017-0230 |
[1] |
BALL R E. The fundamentals of aircraft combat survivability:Analysis and design[M]. 2nd ed. Reston, Virginia:AIAA Education, 2003:667-668. DOI: 10.2514/4.862519.
|
[2] |
VARAS D, ZAERA R, LÓPEZ-PUENTE J. Numerical modelling of the hydrodynamic ram phenomenon[J]. International Journal of Impact Engineering, 2009, 36(3):363-374. DOI: 10.1016/j.ijimpeng.2008.07.020.
|
[3] |
刘国繁, 陈照峰, 王永健, 等.飞机油箱水锤效应研究方法及进展[J].航空工程进展, 2014, 5(1):1-6.DOI: 10.16615/j.cnki.1674-8190.2014.01.007.
LIU Guofan, CHEN Zhaofeng, WANG Yongjian, et.al. Research methods and progress of the hydrodynamic ram effect of aircraft fuel tanks[J]. Advances in Aeronautical Science and Engineering, 2014, 5(1):1-6. DOI: 10.16615/j.cnki.1674-8190.2014.01.007.
|
[4] |
BALL R E. Structural response of fluid containing tanks to penetrating projectiles (hydraulic ram): a comparison of experimental and analytical results: NPS-57BP76051[R]. Monterey, California: Naval Postgraduate School, 1976.
|
[5] |
PATTERSON J W. Fuel cell pressure loading during hydraulic ram[D]. Monterey, California: Naval Postgraduate School, 1975.
|
[6] |
NISHIDA M, TANAKA K. Experimental study of perforation and cracking of water-filled aluminum tubes impacted by steel spheres[J]. International Journal of Impact Engineering, 2006, 32(12):2000-2016. DOI: 10.1016/j.ijimpeng.2005.06.010.
|
[7] |
DISIMILE P J, SWANSON L A, TOY N. The hydrodynamic ram pressure generated by spherical projectiles[J]. International Journal of Impact Engineering, 2009, 36(6):821-829. DOI: 10.1016/j.ijimpeng.2008.12.009.
|
[8] |
VARAS D, ZAERA R, LÓPEZ-PUENTE J. Experimental study of CFRP fluid-filled tubes subjected to high-velocity impact[J]. Composite Structures, 2011, 93(10):2598-2609. DOI: 10.1016/j.compstruct.2011.04.025.
|
[9] |
VARAS D, ZAERA D, LÓPEZ-PUENTE J. Numerical modelling of partially filled aircraft fuel tanks submitted to hydrodynamic ram[J]. Aerospace Science and Technology, 2012, 16(1):19-28. DOI: 10.1016/j.ast.2011.02.003.
|
[10] |
VARAS D, LÓPEZ-PUENTE J, ZAERA R. Experimental analysis of fluid-filled aluminum tubes subjected to high-velocity impact[J]. International Journal of Impact Engineering, 2009, 36(1):81-91. DOI: 10.1016/j.ijimpeng.2008.04.006.
|
[11] |
SANTINI P, PALMIERI D, MARCHETTI M. Numerical simulation of fluid-structure interaction in aircraft fuel tanks subjected to hydrodynamic ram penetration[C]//1st ICAS Congress. Melbourne, Australia, 1998: ICAS-98-4. 3. 1. DOI: 10.1016/j.ijimpeng.2008.07.020.
|
[12] |
JR ANDERSON C E, SHARRON T R, WALKER J D, et al. Simulation and analysis of a 23-mm HEI projectile hydrodynamic ram experiment[J]. International Journal of Impact Engineering, 1999, 22(9):981-997. DOI: 10.1016/S0734-743X(99)00046-9.
|
[13] |
SPARKS C E, HINRICHSEN R L, FRIEDMANN D. Comparison and validation of smooth particle hydrodynamics (SPH) and coupled Euler Lagrange (CEL) techniques for modeling hydrodynamic ram[C]//AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. USA, 2013: 2005-2331. DOI: 10.2514/6.2005-2331.
|
[14] |
VIGNJEVIC R, DEVUYST T, CAMPBELL J C, et al. Modelling of impact on a fuel tank using smoothed particle hydrodynamics[C]//5th Conference on Dynamics and Control of Systems and Structures in Space (DCSSS). Cambridge, UK, 2002.
|
[15] |
李亚智, 陈钢.充液箱体受破片撞击下动态响应的数值模拟[J].机械强度, 2007, 29(1):143-147.DOI: 10.3321/j.issn:1001-9669.
LI Yazhi, CHEN Gang. Numerical simulation of liquid-filled tank response to projectile impact[J]. Journal of Mechanical Strength, 2007, 29(1):143-147. DOI: 10.3321/j.issn:1001-9669.
|
[16] |
陈钢. 高速破片冲击下油箱动态响应的数值模拟[D]. 西安: 西北工业大学, 2005: 36-52. DOI: 10.7666/d.y843974.
|
[17] |
AZIZ M R, KUNTJORO W, DAVID N V. Numerical modeling of the ballistic limit in the hydrodynamic ram[J]. Journal Teknologi (Sciences & Engineering), 2015, 76(8):43-47. DOI: 10.11113/jt.v76.5622.
|
[18] |
CHEN Long, SONG Bifeng, PEI Yang. Simulation analysis of hydrodynamic ram phenomenon in composite fuel tank to fragment impact[J]. Chinese Science Bulletin, 2011, 56(30):3148-3154. DOI: 10.1109/ICMTMA.2011.631.
|
[19] |
HEIMB S, DUWENSEE T, NOGUEIRA A C, et al. Hydrodynamic ram analysis of aircraft fuel tank with different composite T-joint designs[C]//WIT Transactions on the Built Environment on Structures under Shock and Impact, 2014, 141(13): 279-288. DOI: 10.2495/SUSI140241.
|
[20] |
BANERJEE A, DHAR S, ACHARYYA S, et al. Determination of Johnson-Cook material and failure model constants and numerical modelling of Charpy impact test of armour steel[J]. Materials Science and Engineering, 2015, 640:200-209. DOI: 10.1016/j.msea.2015.05.073.
|
[21] |
李晓杰, 姜力, 赵铮, 等.高速旋转弹头侵彻运动金属薄板的数值模拟[J].爆炸与冲击, 2008, 28(1):57-61.DOI: 10.3321/j.issn:1001-1455.2008.01.010.
LI Xiaojie, JIANG Li, ZHAO Zheng, et al. Numerical study on penetration of a high-speed-rotating bullet into the moving sheet-metal plate[J]. Explosion and Shock Waves, 2008, 28(1):57-61. DOI: 10.3321/j.issn:1001-1455.2008.01.010.
|
[22] |
CORONA E, ORIENT G E. An evaluation of the Johnson-Cook model to simulate puncture of 7075 aluminum plates[R]. Sandia National Laboratories, 2014. DOI: 10.2172/1204105.
|
[23] |
TOWNSEND D, PARK N, DEVALL P M. Failure of fluid dilled structures due to high velocity fragment impact[J]. International Journal of Impact Engineering, 2003, 29(1/2/3/4/5/6/7/8/9/10):723-733.DOI: 10.1016/j.ijimpeng.2003.10.019.
|
[24] |
CHEN S, CHOU P. Hypervelocity impact of bumper-protected fuel tanks[J]. Journal of Spacecraft and Rockets, 1970, 7(12):1412-1418. DOI: 10.2514/3.30183.
|