Citation: | GAN Bo, GAO Wei, ZHANG Xinyan, JIANG Haipeng, BI Mingshu. Flame temperatures of PMMA dust clouds with different particle size distributions[J]. Explosion And Shock Waves, 2019, 39(1): 015401. doi: 10.11883/bzycj-2017-0244 |
[1] |
蒯念生, 黄卫星, 袁旌杰, 等.点火能量对粉尘爆炸行为的影响[J].爆炸与冲击, 2012, 32(4):432-438.DOI: 10.11883/1001-1455(2012)04-0432-07.
KUAI Niansheng, HUANG Weixing, YUAN Jingjie, et al. Influence of ignition energy on dust explosion behavior[J]. Explosion and Shock Wave, 2012, 32(4):432-438. DOI: 10.11883/1001-1455(2012)04-0432-07.
|
[2] |
高聪, 李化, 苏丹, 等.密闭空间煤粉的爆炸特性[J].爆炸与冲击, 2010, 30(2):164-168. doi: 10.11883/1001-1455(2010)02-0164-05
GAO Cong, LI Hua, SU Dan, et al. Explosion characteristics of coal dust in a sealed vessel[J]. Explosion and Shock Wave, 2010, 30(2):164-168. DOI: 10.11883/1001-1455(2010)02-0164-05.
|
[3] |
张洪铭, 陈先锋, 张英, 等.基于RGB颜色模型的玉米淀粉爆燃火焰传播速度[J].爆炸与冲击, 2018, 38(1):133-139. doi: 10.11883/bzycj-2016-0278
ZHANG Hongming, CHEN Xianfeng, ZHANG Ying, et al. Flame propagation velocities of cornstarch dust explosion based on RGB color model[J]. Explosion and Shock Wave, 2018, 38(1):133-139. DOI: 10.11883/bzycj-2016-0278.
|
[4] |
DOBASH R, SENDA K. Mechanisms of flame propagation through suspended combustible particles[J]. Journal de Physique Ⅳ, 2002, 12(7):459-465. DOI: 10.1051/jp4:20020316.
|
[5] |
CHEN J L, DOBASH R, HIRANO T. Mechanism of flame propagation through combustible particle clouds[J]. Journal of Loss Prevention in the Process Industries, 1996, 9(3):225-229. DOI: 10.1016/0950-4230(96)00001-0.
|
[6] |
GAO W, DOBASH R, MOGI T, et al. Effects of particle characteristics on flame propagation behavior during organic dust explosions in a half-closed chamber[J]. Journal of Loss Prevention in the Process Industries, 2012, 25(6):993-999. DOI: 10.1016/j.fuel.2013.05.071.
|
[7] |
GAO W, YU J L, MOGI T, et al. Effects of particle thermal characteristics on flame microstructures during dust explosions of three long-chain monobasic alcohols in a half-closed chamber[J]. Journal of Loss Prevention in the Process Industries, 2014, 32(11):127-134. DOI: 10.1016/j.jlp.2014.08.005.
|
[8] |
GAO W, MOGI T, SUN J H, et al. Effects of particle thermal characteristics on flame structures during dust explosions of three long-chain monobasic alcohols in an open-space chamber[J]. Fuel, 2013, 113(11):86-96. DOI: 10.1016/j.fuel.2013.05.071.
|
[9] |
GAO W, MOGI T, SUN J H, et al. Effects of particle size distributions on flame propagation mechanism during octadecanol dust explosions[J]. Powder Technology, 2013, 249(11):168-174. DOI: 10.1016/j.powtec.2013.08.007.
|
[10] |
GAO W, MOGI T, YU J L, et al. Flame propagation mechanisms in dust explosions[J]. Journal of Loss Prevention in the Process Industries, 2015, 36(7):186-194. DOI: 10.1016/j.jlp.2014.12.021.
|
[11] |
高伟, 圆井道也, 荣建忠, 等.粒径分布对有机粉尘爆炸中火焰结构的影响[J].燃烧科学与技术, 2013, 19(2): 157-162. http://www.cnki.com.cn/Article/CJFDTotal-RSKX201302012.htm
GAO Wei, MARUI Michiya, RONG Jianzhong, et al. Effect of particle size distribution on flame structure in organic dust explosion[J]. 2013, 19(2): 157-162. http://www.cnki.com.cn/Article/CJFDTotal-RSKX201302012.htm
|
[12] |
曹卫国, 徐森, 梁济元, 等.煤粉尘爆炸过程中火焰的传播特性[J].爆炸与冲击, 2014, 34(5):586-593. doi: 10.11883/1001-1455(2014)05-0586-08
CAO Weiguo, XU Sen, LIANG Jiyuan, et al. Characteristics of flame propagation during coal dust cloud explosion[J]. Explosion and Shock Wave, 2014, 34(5):586-593. DOI: 10.11883/1001-1455(2014)05-0586-08.
|
[13] |
WINGERDEN K V, STAVSENG L. Measurements of the laminar burning velocities in dust-air mixtures[J]. VDI-Berichte, 1996(1272):553-564.
|
[14] |
孙金华.PMMA微粒子云中传播火焰的基本结构[J].热科学与技术, 2004, 3(1):76-80. doi: 10.3969/j.issn.1671-8097.2004.01.017
SUN Jinhua. The basic structure of propagating flame in PMMA micro-particle clouds[J]. Journal of Thermal Science and Technology, 2004, 3(1):76-80. doi: 10.3969/j.issn.1671-8097.2004.01.017
|
[15] |
ZHANG X Y, YU J L, GAO W, et al. Flame propagation behaviors of nano-and micro-scale PMMA dust explosions[J]. Journal of Loss Prevention in the Process Industries, 2016, 40(3):101-111. DOI: 10.1016/j.jlp.2015.12.010.
|
[16] |
ZHANG X Y, YU J L, GAO W, et al. Effects of particle size distributions on PMMA dust flame propagation behaviors[J]. Powder Technology, 2017, 317(7):197-208. DOI: 10.1016/j.powtec.2017.05.001.
|
[17] |
BALLANTYNE A, MOSS J B. Fine wire thermocouple measurements of fluctuating temperature[J]. Combustion Science and Technology, 1977, 17(1/2):63-72. DOI: 10.1080/00102209708946813.
|
[18] |
杨世铭.传热学[M].北京:北京高等教育出版社, 1987:331-333.
|
[19] |
姜滦生, 孙皆宜, 刘爽.基于CCD比色原理的熟料温度场测量[J].仪器仪表学报, 2006(增刊1):52-54. http://d.old.wanfangdata.com.cn/Periodical/yqyb2006z1021
JIANG Luansheng, SUN Jieyi, LIU Shuang. Measurement of clinker temperature field based on CCD colorimetric theory[J]. Chinese Journal of Scientific Instrument, 2006(Suppl 1):52-54. http://d.old.wanfangdata.com.cn/Periodical/yqyb2006z1021
|
[20] |
GAO W, MOGI T, RONG J Z, et al. Motion behaviors of the unburned particles ahead of flame front in hexadecanol dust explosion[J]. Powder Technology, 2015, 271(2):125-133. DOI: 10.1016/j.powtec.2014.11.003.
|
1. | 司凯凯 ,张光权 ,杨如孜 ,王梦佳 . 基于SET方法的爆破振动信号时频特征分析. 矿业工程研究. 2024(02): 35-41 . ![]() | |
2. | 付晓强,麻岩,俞缙,戴良玉,黄凌君. 隧道爆破振动信号时频谱增强优化分析. 矿业科学学报. 2023(03): 348-356 . ![]() | |
3. | 孙苗,杨钧凯,吴立. 改进希尔伯特-黄变换含噪振动信号时频分析. 上海交通大学学报. 2023(12): 1648-1656 . ![]() | |
4. | 付晓强,俞缙,刘纪峰,黄凌君,戴良玉,康海鑫. 隧道爆破振动信号畸变校正及特征提取研究. 工程爆破. 2022(01): 1-9 . ![]() | |
5. | 王祥献,穆锐,黄质宏,孔伏祥,张琪,张弘. 露天爆破对既有结构关键振动特征的影响分析. 兵器装备工程学报. 2021(03): 240-246 . ![]() | |
6. | 付晓强,俞缙,戴良玉,秦双双. 隧道爆破振动信号时频谱交叉项干扰抑制方法. 振动与冲击. 2021(19): 59-65+79 . ![]() | |
7. | 付晓强,俞缙. 隧道爆破信号交叉项抑制及雷管延期时间研究. 中国安全科学学报. 2021(12): 53-61 . ![]() | |
8. | 邬蒙蒙. 改进的完备经验模态分解与WVD变换相结合在油气检测中的应用. 油气地球物理. 2020(01): 26+73-76 . ![]() | |
9. | 付晓强,黄凌君,张仁巍,秦双双,刘静. 基于匹配追踪算法的立井爆破信号时频特征提取. 爆破器材. 2020(06): 54-60 . ![]() | |
10. | 马华原,龙源,李兴华,钟明寿,周辉,吴建源. 全尺寸干线输气管道爆炸地振动的空间分布和时频分布特性. 爆炸与冲击. 2019(04): 99-107 . ![]() |