Volume 39 Issue 1
Oct.  2018
Turn off MathJax
Article Contents
GAN Bo, GAO Wei, ZHANG Xinyan, JIANG Haipeng, BI Mingshu. Flame temperatures of PMMA dust clouds with different particle size distributions[J]. Explosion And Shock Waves, 2019, 39(1): 015401. doi: 10.11883/bzycj-2017-0244
Citation: GAN Bo, GAO Wei, ZHANG Xinyan, JIANG Haipeng, BI Mingshu. Flame temperatures of PMMA dust clouds with different particle size distributions[J]. Explosion And Shock Waves, 2019, 39(1): 015401. doi: 10.11883/bzycj-2017-0244

Flame temperatures of PMMA dust clouds with different particle size distributions

doi: 10.11883/bzycj-2017-0244
  • Received Date: 2017-07-10
  • Rev Recd Date: 2017-10-02
  • Publish Date: 2019-01-05
  • In the present study, to find out about the effects of particle size distributions on the flame temperatures of polymethyl methacrylate (PMMA) dust clouds, we measured the flame temperatures of PMMA dust clouds with different particle size distributions using the thermocouple and high-speed colorimetric method. The results show that, due to the faster pyrolysis/volatilization rate of 100 nm dust particle, the temperature was able to reach 1 551℃ while the maximum temperature of 30 μm dust cloud was only 1 108℃. The maximum flame temperature and high temperature flame area increased and then decreased with the increase of PMMA dust particle size for micron-scale. The pyrolysis/volatilization time scale of 20 μm dust particles was close to the combustion reaction time scale because of their good dispersibility. As a result, the maximum temperature and high temperature flame area were the largest among the particles with different particle size distributions.
  • loading
  • [1]
    蒯念生, 黄卫星, 袁旌杰, 等.点火能量对粉尘爆炸行为的影响[J].爆炸与冲击, 2012, 32(4):432-438.DOI: 10.11883/1001-1455(2012)04-0432-07.

    KUAI Niansheng, HUANG Weixing, YUAN Jingjie, et al. Influence of ignition energy on dust explosion behavior[J]. Explosion and Shock Wave, 2012, 32(4):432-438. DOI: 10.11883/1001-1455(2012)04-0432-07.
    [2]
    高聪, 李化, 苏丹, 等.密闭空间煤粉的爆炸特性[J].爆炸与冲击, 2010, 30(2):164-168. doi: 10.11883/1001-1455(2010)02-0164-05

    GAO Cong, LI Hua, SU Dan, et al. Explosion characteristics of coal dust in a sealed vessel[J]. Explosion and Shock Wave, 2010, 30(2):164-168. DOI: 10.11883/1001-1455(2010)02-0164-05.
    [3]
    张洪铭, 陈先锋, 张英, 等.基于RGB颜色模型的玉米淀粉爆燃火焰传播速度[J].爆炸与冲击, 2018, 38(1):133-139. doi: 10.11883/bzycj-2016-0278

    ZHANG Hongming, CHEN Xianfeng, ZHANG Ying, et al. Flame propagation velocities of cornstarch dust explosion based on RGB color model[J]. Explosion and Shock Wave, 2018, 38(1):133-139. DOI: 10.11883/bzycj-2016-0278.
    [4]
    DOBASH R, SENDA K. Mechanisms of flame propagation through suspended combustible particles[J]. Journal de Physique Ⅳ, 2002, 12(7):459-465. DOI: 10.1051/jp4:20020316.
    [5]
    CHEN J L, DOBASH R, HIRANO T. Mechanism of flame propagation through combustible particle clouds[J]. Journal of Loss Prevention in the Process Industries, 1996, 9(3):225-229. DOI: 10.1016/0950-4230(96)00001-0.
    [6]
    GAO W, DOBASH R, MOGI T, et al. Effects of particle characteristics on flame propagation behavior during organic dust explosions in a half-closed chamber[J]. Journal of Loss Prevention in the Process Industries, 2012, 25(6):993-999. DOI: 10.1016/j.fuel.2013.05.071.
    [7]
    GAO W, YU J L, MOGI T, et al. Effects of particle thermal characteristics on flame microstructures during dust explosions of three long-chain monobasic alcohols in a half-closed chamber[J]. Journal of Loss Prevention in the Process Industries, 2014, 32(11):127-134. DOI: 10.1016/j.jlp.2014.08.005.
    [8]
    GAO W, MOGI T, SUN J H, et al. Effects of particle thermal characteristics on flame structures during dust explosions of three long-chain monobasic alcohols in an open-space chamber[J]. Fuel, 2013, 113(11):86-96. DOI: 10.1016/j.fuel.2013.05.071.
    [9]
    GAO W, MOGI T, SUN J H, et al. Effects of particle size distributions on flame propagation mechanism during octadecanol dust explosions[J]. Powder Technology, 2013, 249(11):168-174. DOI: 10.1016/j.powtec.2013.08.007.
    [10]
    GAO W, MOGI T, YU J L, et al. Flame propagation mechanisms in dust explosions[J]. Journal of Loss Prevention in the Process Industries, 2015, 36(7):186-194. DOI: 10.1016/j.jlp.2014.12.021.
    [11]
    高伟, 圆井道也, 荣建忠, 等.粒径分布对有机粉尘爆炸中火焰结构的影响[J].燃烧科学与技术, 2013, 19(2): 157-162. http://www.cnki.com.cn/Article/CJFDTotal-RSKX201302012.htm

    GAO Wei, MARUI Michiya, RONG Jianzhong, et al. Effect of particle size distribution on flame structure in organic dust explosion[J]. 2013, 19(2): 157-162. http://www.cnki.com.cn/Article/CJFDTotal-RSKX201302012.htm
    [12]
    曹卫国, 徐森, 梁济元, 等.煤粉尘爆炸过程中火焰的传播特性[J].爆炸与冲击, 2014, 34(5):586-593. doi: 10.11883/1001-1455(2014)05-0586-08

    CAO Weiguo, XU Sen, LIANG Jiyuan, et al. Characteristics of flame propagation during coal dust cloud explosion[J]. Explosion and Shock Wave, 2014, 34(5):586-593. DOI: 10.11883/1001-1455(2014)05-0586-08.
    [13]
    WINGERDEN K V, STAVSENG L. Measurements of the laminar burning velocities in dust-air mixtures[J]. VDI-Berichte, 1996(1272):553-564.
    [14]
    孙金华.PMMA微粒子云中传播火焰的基本结构[J].热科学与技术, 2004, 3(1):76-80. doi: 10.3969/j.issn.1671-8097.2004.01.017

    SUN Jinhua. The basic structure of propagating flame in PMMA micro-particle clouds[J]. Journal of Thermal Science and Technology, 2004, 3(1):76-80. doi: 10.3969/j.issn.1671-8097.2004.01.017
    [15]
    ZHANG X Y, YU J L, GAO W, et al. Flame propagation behaviors of nano-and micro-scale PMMA dust explosions[J]. Journal of Loss Prevention in the Process Industries, 2016, 40(3):101-111. DOI: 10.1016/j.jlp.2015.12.010.
    [16]
    ZHANG X Y, YU J L, GAO W, et al. Effects of particle size distributions on PMMA dust flame propagation behaviors[J]. Powder Technology, 2017, 317(7):197-208. DOI: 10.1016/j.powtec.2017.05.001.
    [17]
    BALLANTYNE A, MOSS J B. Fine wire thermocouple measurements of fluctuating temperature[J]. Combustion Science and Technology, 1977, 17(1/2):63-72. DOI: 10.1080/00102209708946813.
    [18]
    杨世铭.传热学[M].北京:北京高等教育出版社, 1987:331-333.
    [19]
    姜滦生, 孙皆宜, 刘爽.基于CCD比色原理的熟料温度场测量[J].仪器仪表学报, 2006(增刊1):52-54. http://d.old.wanfangdata.com.cn/Periodical/yqyb2006z1021

    JIANG Luansheng, SUN Jieyi, LIU Shuang. Measurement of clinker temperature field based on CCD colorimetric theory[J]. Chinese Journal of Scientific Instrument, 2006(Suppl 1):52-54. http://d.old.wanfangdata.com.cn/Periodical/yqyb2006z1021
    [20]
    GAO W, MOGI T, RONG J Z, et al. Motion behaviors of the unburned particles ahead of flame front in hexadecanol dust explosion[J]. Powder Technology, 2015, 271(2):125-133. DOI: 10.1016/j.powtec.2014.11.003.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (5673) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return