Volume 39 Issue 1
Oct.  2018
Turn off MathJax
Article Contents
CHEN Xiang, LI Xiaojie, MIAO Yusong, YAN Honghao, WANG Xiaohong. Explosive compaction-sintering of tungsten/copper gradient material[J]. Explosion And Shock Waves, 2019, 39(1): 015301. doi: 10.11883/bzycj-2017-0307
Citation: CHEN Xiang, LI Xiaojie, MIAO Yusong, YAN Honghao, WANG Xiaohong. Explosive compaction-sintering of tungsten/copper gradient material[J]. Explosion And Shock Waves, 2019, 39(1): 015301. doi: 10.11883/bzycj-2017-0307

Explosive compaction-sintering of tungsten/copper gradient material

doi: 10.11883/bzycj-2017-0307
  • Received Date: 2017-09-03
  • Rev Recd Date: 2017-12-05
  • Publish Date: 2019-01-05
  • In this study we investigated the explosive compaction-sintering for fabricating a high-density tungsten/copper alloy on a copper surface. First, 50% W-50% Cu tungsten/copper alloy powder and 75% W-25% Cu were prepared by mechanical alloying. Next, the alloy powders were pre-compacted and sintered in hydrogen atmosphere, followed by explosive compaction. Then, a high-density tungsten/copper gradient material was obtained with the coatings and the matrix tightly bonded and the copper enriched at the interfaces between the tungsten/copper particles. The tungsten grains in the 50% W-50% Cu layer did not grow, and in the 75% W-25% Cu layer the tungsten and copper were enriched in local regions. Porosity tests were carried out, the porosity of the 50% W-50% Cu layer was 0.04%, and that of the 75% W-25% Cu layer was 0.11%. The contents of tungsten and copper in the coatings were similar to the added ratio of the tungsten powder and copper powder. The hardness of the tungsten/copper gradient layer exhibited a tendency of gradient change, varying between 125-341, much bigger than 50, that of the copper.
  • loading
  • [1]
    CALLISTI M, KARLI M, POLCAR T. Bubbles formation in helium ion irradiated Cu/W multilayer nanocomposites:Effects on structure and mechanical properties[J]. Journal of Nuclear Materials, 2016, 473:18-27. DOI: 10.1016/j.jnucmat.2016.02.006.
    [2]
    GAO Hongmei, CHEN Wenge, ZHANG Zhijun. Evolution mechanism of surface nano-crystallization of tungsten-copper alloys[J]. Materials Letters, 2016, 176:181-184. DOI: 10.1016/j.matlet.2016.04.104.
    [3]
    ELSAYED A, LI Wei, El KADY O A, et al. Experimental investigations on the synthesis of W/Cu nanocomposite through spark plasma sintering[J]. Journal of Alloys and Compounds, 2015, 639:373-380. DOI: 10.1016/j.jallcom.2015.03.183.
    [4]
    TANG Xiaoqiao, ZHANG Haibin, DU Daming, et al. Fabrication of W-Cu functionally graded material by spark plasma sintering method[J]. International Journal of Refractory Metals and Hard Materials, 2014, 42:193-199. DOI: 10.1016/j.ijrmhm.2013.09.005.
    [5]
    ZHOU ZhangJian, DU Juan, SONG Shuxiang, et al. Microstructural characterization of W/Cu functionally graded materials produced by a one-step resistance sintering method[J]. Journal of Alloys and Compounds, 2007, 428(1):146-150. DOI: 10.1016/j.jallcom.2006.03.073.
    [6]
    LI Shibo, XIE Hanxin. Processing and microstructure of functionally graded W/Cu composites fabricated by multi-billet extrusion using mechanically alloyed powders[J]. Composites Science and Technology, 2006, 66(13):2329-2336. DOI: 10.1016/j.compscitech.2005.11.034.
    [7]
    DÖRING J E, VASSEN R, PINTSUK G, et al. The processing of vacuum plasma-sprayed tungsten-copper composite coatings for high heat flux components[J]. Fusion Engineering and Design, 2003, 66/67/68:259-263. DOI: 10.1016/S0920-3796(03)00302-8.
    [8]
    PRÜMMER R. Explosive compaction of powders, principle and prospects[J]. Materialwissenschaft und Werkstofftechnik, 1989, 20(12):410-415. DOI: 10.1002/mawe.19890201213.
    [9]
    王占磊, 李晓杰, 张程娇, 等.爆炸烧结W-Cu合金药型罩材料及其性能[J].爆炸与冲击, 2011, 31(3):332-336.DOI: 10.11883/1001-1455(2011)03-0332-05.

    WANG Zhanlei, LI Xiaojie, ZHANG Chengjiao, et al. Explosive consolidation of W-Cu alloy as liner materials and its performance[J]. Explosion and Shock Waves, 2011, 31(3):332-336. DOI: 10.11883/1001-1455(2011)03-0332-05.
    [10]
    VOROZHTSOV S, VOROZHTSOV A, KUDRYASHOVA O, et al. Structural and mechanical properties of aluminium-based composites processed by explosive compaction[J]. Powder Technology, 2017, 313:251-259. DOI: 10.1016/j.powtec.2017.03.027.
    [11]
    王金相, 张晓立, 赵铮, 等.非晶颗粒增强铝基非晶复合材料的爆炸压实及其力学性能[J].稀有金属材料与工程, 2009, 38(A01):48-51. http://d.old.wanfangdata.com.cn/Periodical/xyjsclygc2009z1011

    WANG Jinxiang, ZHANG Xiaoli, ZHAO Zheng, et al. Research of explosively compacted metallic glass particles-reinforced Al based MMCs and its mechanical property[J]. Rare Metal Materials and Engineering, 2009, 38(A01):48-51. http://d.old.wanfangdata.com.cn/Periodical/xyjsclygc2009z1011
    [12]
    CHEN Xiang, LI Xiaojie, YAN Honghao, et al. Factors affecting explosive compaction-sintering of tungsten-copper coating on a copper surface[J]. Journal of Alloys and Compounds, 2017, 729:1201-1208. DOI: 10.1016/j.jallcom.2017.09.278.
    [13]
    杜长星, 赵铮, 陶钢, 等.爆炸压涂制备铜涂层的性[J].爆炸与冲击, 2014, 34(1):6-10.DOI: 10.11883/1001-1455(2014)01-0006-05.

    DU Changxing, ZHAO Zheng, TAO Gang, et al. Microstructure and properties of copper coating prepared by explosive compaction-coating[J]. Explosion and Shock Waves, 2014, 34(1):6-10. doi: 10.11883/1001-1455(2014)01-0006-05
    [14]
    TANAKA S, HOKAMOTO K, TORII S, et al. Surface coating by diamond particles on an aluminum substrate by underwater shock wave[J]. Journal of Materials Processing Technology, 2010, 210(1):32-36. DOI: 10.1016/j.jmatprotec.2009.08.023.
    [15]
    RAGHU T, SUNDARESAN R, RAMAKRISHNAN P, et al. Synthesis of nanocrystalline copper-tungsten alloys by mechanical Steady waves in ductile porous solids alloying[J]. Materials Science and Engineering:A, 2001, 304:438-441. DOI: 10.1016/S0921-5093(00)01444-1.
    [16]
    CARROLL M M, HOLT A C. Steady waves in ductile porous solids[J]. Journal of Applied Physics, 1973, 44(10):4388-4392. DOI: 10.1063/1.1661970.
    [17]
    ARDESTANI M, ARABI H, REZAIE H R, et al. Synthesis and densification of W-30wt% Cu composite powders using ammonium meta tungstate and copper nitrate as precursors[J]. International Journal of Refractory Metals and Hard Materials, 2009, 27(4):796-800. DOI: 10.1016/j.ijrmhm.2009.01.001.
    [18]
    CHEN Pingan, SHEN Qiang, LUO Guoqiang, et al. The mechanical properties of W-Cu composite by activated sintering[J]. International Journal of Refractory Metals and Hard Materials, 2013, 36:220-224. DOI: 10.1016/j.ijrmhm.2012.09.001.
    [19]
    IBRAHIM A, ABDALLAH M, MOSTAFA S F, et al. An experimental investigation on the W-Cu composites[J]. Materials and Design, 2009, 30(4):1398-1403. DOI: 10.1016/j.matdes.2008.06.068.
    [20]
    WANG Zhanlei, LI Xiaojie, YAN Honghao, et al. Investigation on explosive compaction of W-Cu nanocomposite powders[J]. Combustion, Explosion, and Shock Waves, 2012, 48(2):245-249. doi: 10.1134/S0010508212020141
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article Metrics

    Article views (4634) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return