Volume 39 Issue 2
Feb.  2019
Turn off MathJax
Article Contents
HU Jinwen, YOU Xiaojian, WEN Xinyi, PENG Xiaojun, LI Tianyao. Influnence of side water on anti-collision performance of a ship[J]. Explosion And Shock Waves, 2019, 39(2): 023303. doi: 10.11883/bzycj-2017-0319
Citation: HU Jinwen, YOU Xiaojian, WEN Xinyi, PENG Xiaojun, LI Tianyao. Influnence of side water on anti-collision performance of a ship[J]. Explosion And Shock Waves, 2019, 39(2): 023303. doi: 10.11883/bzycj-2017-0319

Influnence of side water on anti-collision performance of a ship

doi: 10.11883/bzycj-2017-0319
  • Received Date: 2017-09-03
  • Rev Recd Date: 2017-12-27
  • Publish Date: 2019-02-05
  • In order to evaluate the anti-collision characteristics of a side tank impacted by a large object, the anti-collision performances of the outer side shell and the inner side shell under different impact velocity and tank waterlines were analyzed on the basis of the finite element method and the simplified theory method. The results show that the water can significantly enforce the anti-collision performance of the double-side structure, but the increasement is limited, and the water affects weakly the failure of the outer shell, but which has a great influence on the broken reaction force of the inner side shell. When the velocity of the bulbous bow gradually increases, the broken reaction forces of the outer side shell and the inner shell gradually increase, but the increasing rates tend to be gentle gradually, and the increasing rate for the broken reaction force of the outer side shell tends to be gentle faster than that for the inner side shell. And the analysis on different tank waterlines shows that, when the waterline of the side tank is above the impacted stong frame, the anti-collision characteristics are less affected. When the waterline of the side tank is below the impacted strong frame, the anti-collision characteristics of the side outer shell are less affected, but the waterline has a great influence on the anti-collision characteristics of the inner side shell, and the differences increase corresponding to different waterlines with increasing the collision velocity of the bulbous bow.
  • loading
  • [1]
    胡志强, 崔维成.船舶碰撞机理与耐撞性结构设计研究综述[J].船舶力学, 2005, 9(2):131-142. DOI: 10.3969/j.issn.1007-7294.2005.02.019.

    HU Zhiqiang, CUI Weicheng. A review of the researches on the ship collision mechanisms and the structural designs against collision[J]. Journal of Ship Mechanics, 2005, 9(2):131-142. DOI: 10.3969/j.issn.1007-7294.2005.02.019.
    [2]
    CHO S R, LEE H S. Experimental and analytical investigations on the response of stiffened paltes subjected to lateral collisions[J]. Marine Structure, 2009, 22(1):84-95. DOI: 10.1016/j.marstruc.2008.06.003.
    [3]
    WANG G. Structural analysis of ships' collision and grounding[D]. University of Tokyo, 1995.
    [4]
    WANG G, KIKUO A, LIU D. Behavior of a double hull in a variety of stranding or collision scenarios[J]. Marine Structures, 2000, 13(3):147-187. DOI: 10.1016/S0951-8339(00)00036-8.
    [5]
    刘元丹, 刘敬喜, 肖曙明, 等.双壳船内壳和外壳结构耐撞性能的分析和比较[J].中国造船, 2012, 53(3):121-128. DOI: 10.3969/j.issn.1000-4882.2012.03.016.

    LIU Yuandan, LIU Jingxi, XIAO Shuming, et al. Comparison of crashworthiness of inside shell with that of outside one for double-hull structures[J]. Shipbuilding of China, 2012, 53(3):121-128. DOI: 10.3969/j.issn.1000-4882.2012.03.016.
    [6]
    王自力, 顾永宁.船舶碰撞动力学过程的数值仿真研究[J].爆炸与冲击, 2001, 21(1):29-34. DOI: 10.3321/j.issn:1001-1455.2001.01.007.

    WANG Zili, GU Yongning. Numerical simulations of ship collisions[J]. Explosion and Shock Waves, 2001, 21(1):29-34. DOI: 10.3321/j.issn:1001-1455.2001.01.007.
    [7]
    OZGUC O, DAS P K, BARLTROP N. A comparative study on the structural integrity of single and double side skin bulk carriers under collision damage[J]. Marine Structures, 2005, 18(7):511-547. DOI: 10.1016/j.marstruc.2006.01.004.
    [8]
    ZHANG A, SUZUKI K. Numerical simulation of fluid-structure interaction of liquid cargo filled tank during ship collision using the ALE finite element method[J]. International Journal of Crashworthiness, 2006, 11(4):291-298. DOI: 10.1533/ijcr.2005.0105.
    [9]
    朱锡, 梅志远, 徐顺棋, 等.高速破片侵彻舰用复合装甲模拟试验研究[J].兵工学报, 2003, 24(4):530-533. DOI: 10.3321/j.issn:1000-1093.2003.04.023.

    ZHU Xi, MEI Zhiyuan, XU Shunqi, et al. Experiment research on the penetration of high-velocity fragments in composite warship armor[J]. Acta Armamentar, 2003, 24(4):530-533. DOI: 10.3321/j.issn:1000-1093.2003.04.023.
    [10]
    ZAID M, PAUL B. Oblique perforation of a thin plate by a truncated conical projectile[J]. Journal of the Frankin institute, 1959, 26(8):22-24. DOI: 10.1016/0016-0032(59)90354-0.
    [11]
    LANDKOF B, GOLDSMITH W. Petalling of thin metallic plates during penetration by cylindro-conical projection[J]. International Journal of Solids and Structures, 1985, 21(3):245-246. doi: 10.1016/0020-7683(85)90021-6
    [12]
    RAVID M, BONDER S R, HOLCMAN I. Penetration into thick targets-refinement of a 2D dynamic plasticity approach[J]. International Journal of Impact Engineering, 1994, 15(4):491-499. DOI: 10.1016/0734-743X(94)80030-D.
    [13]
    徐双喜, 吴卫国, 李晓彬, 等.舰船舷侧防护液舱舱壁对爆炸破片的防御作用[J].爆炸与冲击, 2010, 30(4):395-400. DOI: 10.11883/1001-1455(2010)04-0395-06.

    XU Shuangxi, WU Weiguo, LI Xiaobin, et al. Protective effect of guarding fluid cabin bulkhead under attaking by explosion fragments[J]. Explosion and Shock Waves, 2010, 30(4):395-400. DOI: 10.11883/1001-1455(2010)04-0395-06.
    [14]
    孔祥韶, 吴卫国, 刘芳, 等.舰船舷侧防护液舱对爆炸破片的防御作用研究[J].船舶力学, 2014, 18(8):996-1004. DOI: 10.3969/j.issn.1007-7294.2014.08.015.

    KONG Xiangshao, WU Weiguo, LIU Fang, et al. Research on protective effect of guarding fliud cabin under attacking by explosion fragments[J]. Journal of Ship Mechanics, 2014, 18(8):996-1004. DOI: 10.3969/j.issn.1007-7294.2014.08.015.
    [15]
    张延昌, 杨代玉, 王自力.舱内液体对VLCC舷侧结构碰撞性能的影响[J].爆炸与冲击, 2010, 30(5):479-486. DOI: 10.11883/1001-1455(2010)05-0479-08.

    ZHANG Yanchang, YANG Daiyu, WANG Zili. Effects of liquid cargo on side structure behaviors of a VLCC in collision[J]. Explosion and Shock Waves, 2010, 30(5):479-486. DOI: 10.11883/1001-1455(2010)05-0479-08.
    [16]
    ZHANG A N, KATSUYUKI S. A comparative study of numerical simulations for fluid-structure interation of liquid-filled tank during ship collision[J]. Ocean Engineering, 2007, 34:645-652. DOI: 10.1016/j.oceaneng.2006.06.001.
    [17]
    EHLERS S, BROEKHUIJSEN J, ALSOS H S, et al. Simulating the collision response of ship side structures:a failure criteria benchmark study[J]. International Shipbuilding Progress, 2008, 55(1):127-144. DOI: 10.3233/ISP-2008-0042.
    [18]
    MACRO A, CASTELLESTTI L, MAURIZIO T. Fluid-structure interaction of water filled tanks during the impact with the ground[J]. International Journal of Impact Engineering, 2005, 31:235-254. DOI: 10.1016/j.ijimpeng.2003.12.005.
    [19]
    中国船级社.内河船舶抗碰撞能力评估指南[R].北京: 中国船级社, 2012.
    [20]
    LECYSYN N, BONYDANDRIEUX A, APRIN L, et al. Experimental study of hydraulic ram effects on a liquid storage tanks:analysis of overpressure and cavitation induced by a high-speed projectile[J]. Journal of Hazardous Materials, 2010, 178(1/2/3):635-643. DOI: 10.1016/j.jhazmat.2010.01.132.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (5669) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return