Citation: | NIU Zhenkun, CHEN Xiaowei, DENG Yongjun, YAO Yong. Cavity expansion response of concrete targets under penetration[J]. Explosion And Shock Waves, 2019, 39(2): 023301. doi: 10.11883/bzycj-2017-0368 |
[1] |
FREW D J, FORRESTAL M J, CARGILE J D. The effect of concrete target diameter on projectile deceleration and penetration depth[J]. International Journal of Impact Engineering, 2006, 32(10):1584-1594. DOI: 10.1016/j.ijimpeng.2005.01.012.
|
[2] |
武海军, 黄风雷, 金乾坤, 等.弹体贯穿钢筋混凝土数值模拟[J].爆炸与冲击, 2003, 23(6):545-550. doi: 10.3321/j.issn:1001-1455.2003.06.011
WU Haijun, HUANG Fenglei, JIN Qiankun, et al. Numerical simulation on perforation of reinforced concrete targets[J]. Explosion and Shock Waves, 2003, 23(6):545-550. doi: 10.3321/j.issn:1001-1455.2003.06.011
|
[3] |
FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets[J]. International Journal of Impact Engineering, 1994, 15(4):395-405. DOI: 10.1016/0734-743X(94)80024-4.
|
[4] |
CHEN Xiaowei, FAN S C, LI Qingmin. Oblique and normal perforation of concrete targets by a rigid projectile[J]. International Journal of Solids and Structures, 2004, 30(6):617-637. DOI: 10.1016/j.ijimpeng.2003.08.003.
|
[5] |
FORRESTAL M J, LUK V K. Penetration into soil targets[J]. International Journal of Impact Engineering, 1992, 12(3):427-444. DOI: 10.1016/0734-743X(92)90167-R.
|
[6] |
FORRESTAL M J, TZOU D Y. A spherical cavity-expansion penetration model for concrete targets[J]. International Journal of Solids and Structures, 1997, 34(31):4127-4146. DOI: 10.1016/S0020-7683(97)00017-6.
|
[7] |
ROSENBERG Z, DEKEL E. A numerical study of the cavity expansion process and its application to long-rod penetration mechanics[J]. International Journal of Impact Engineering, 2008, 35(3):147-154. DOI: 10.1016/j.ijimpeng.2007.01.005.
|
[8] |
ROSENBERG Z, DEKEL E. Analytical solution of the spherical cavity expansion process[J]. International Journal of Impact Engineering, 2009, 36(3):193-198. DOI: 10.1016/j.ijimpeng.2007.12.014.
|
[9] |
王一楠, 黄风雷.混凝土材料动态球形空腔膨胀的数值模拟[J].北京理工大学学报, 2010, 30(1):5-9. DOI: 10.15918/j.tbit1001-0645.2010.01.010.
WANG Yinan, HUANG Fenglei. Numerical simulation of dynamic spherical cavity expansion for concrete materials[J]. Transactions of Beijing Institute of Technology, 2010, 30(1):5-9. DOI: 10.15918/j.tbit1001-0645.2010.01.010.
|
[10] |
李志康, 黄风雷.混凝土材料的动态空腔膨胀理论[J].爆炸与冲击, 2009, 29(01):95-101. DOI: 10.11883/1001-1455(2009)01-0095-06.
LI Zhikang, HUANG Fenglei. A dynamic spherical cavity-expansion theory for concrete materials[J]. Explosion and Shock Waves, 2009, 29(1):95-101. DOI: 10.11883/1001-1455(2009)01-0095-06.
|
[11] |
HANCHAK S J, FORRESTAL M J, YOUNG E R, et al. Perforation of concrete slabs with 48MPa (ksi) and 140MPa (20ksi) unconfined compressive strengths[J]. International Journal of Impact Engineering, 1992, 12(1):1-7. DOI: 10.1016/0734-743X(92)90282-X.
|
[12] |
MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D[J]. International Journal of Impact Engineering, 1997, 19(9/10):847-873. DOI: 10.1016/S0734-743X(97)00023-7.
|
[13] |
匡志平, 陈少群.混凝土K&C模型材料参数分析与模拟[J].力学季刊, 2015, 36(3):517-526. DOI: 10.15959/i.cnki.0254-0053.2015.03.019.
KUANG Zhiping, CHEN Shaoqun. Analysis and simulation for the material parameters of K&C concrete model[J]. Chinese Quarterly of Mechanics, 2015, 36(3):517-526. DOI: 10.15959/i.cnki.0254-0053.2015.03.019.
|
[14] |
Livermore Software Technology Corporation. LS-DYNA keyword user's manual(971)[M]. Livermore:Livermore Software Technology Corporation, 2007.
|
[15] |
邓勇军, 陈小伟, 姚勇, 等.基于细观混凝土模型的刚性弹体正侵彻弹道偏转分析[J].爆炸与冲击, 2017, 37(3):377-386. DOI: 10.11883/1001-1455(2017)03-0377-10.
DENG Yongjun, CHEN Xiaowei, YAO Yong, et al. On ballistic trajectory of rigid projectile normal penetration based on a meso-scopic concrete model[J]. Explosion and Shock Waves, 2017, 37(3):377-386. DOI:10.11883/1001- 1455(2017)03-0377-10.
|
[16] |
朱伯龙, 董振祥.钢筋混凝土非线性分析[M].上海:同济大学出版社, 1985:1-26.
|
[17] |
吕西林, 金国方, 吴晓涵.钢筋混凝土非线性有限元理论与应用[M].上海:同济大学出版社, 1997:7-34.
|
[18] |
何丽灵, 陈小伟, 徐伟芳, 等.加速度计预埋法测量弹体侵深的机理分析[J].防护工程, 2014, 36(2):21-25.
HE Liling, CHEN Xiaowei, XU Weifang, et al. Analysis on mechanism of pre-buried accelerometer method for DOP measurement[J]. Protective Engineering, 2014, 36(2):21-25.
|
[1] | QIAN Bingwen, ZHOU Gang, LI Mingrui, YIN Lixin, GAO Pengfei, CHEN Chunlin, MA Kun. Rigid-body critical transformation velocity of a high-strength steel projectile penetrating concrete targets at high velocities[J]. Explosion And Shock Waves, 2024, 44(10): 103301. doi: 10.11883/bzycj-2022-0309 |
[2] | QIAN Bingwen, ZHOU Gang, LI Mingrui, CHEN Chunlin, GAO Pengfei, SHEN Zikai, MA Kun. Influences of material properties of a projectile on hypervelocity penetration depth[J]. Explosion And Shock Waves, 2024, 44(10): 103302. doi: 10.11883/bzycj-2022-0310 |
[3] | YANG Yaozong, KONG Xiangzhen, TANG Junjie, FANG Qin. Numerical simulation and engineering design method for prefabricated concrete bursting layer subjected to projectile penetration[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0279 |
[4] | WANG Ziguo, WANG Songtao, KONG Xiangzhen, SUN Yuyan. Anti-penetration capability of pre-stressed confined concrete with truncated cone[J]. Explosion And Shock Waves, 2022, 42(10): 103303. doi: 10.11883/bzycj-2022-0030 |
[5] | LI Jie, CHENG Yihao, XU Tianhan, WANG Mingyang. Review on theoretical research of penetration effects into rock-like material[J]. Explosion And Shock Waves, 2019, 39(8): 081101. doi: 10.11883/bzycj-2019-0286 |
[6] | XU Songlin, SHAN Junfang, WANG Pengfei, HU Shisheng. Penetration performance of concrete under triaxial stress[J]. Explosion And Shock Waves, 2019, 39(7): 071101. doi: 10.11883/bzycj-2019-0034 |
[7] | WU Cheng, SHEN Xiaojun, WANG Xiaoming, YAO Wenjin. Numerical simulation on anti-penetration and penetration depth model of mesoscale concrete target[J]. Explosion And Shock Waves, 2018, 38(6): 1364-1371. doi: 10.11883/bzycj-2017-0123 |
[8] | Qiang Hongfu, Fan Shujia, Chen Fuzhen, Liu Hu. Numerical simulation on penetration of concrete target by shaped charge jet with SPH method[J]. Explosion And Shock Waves, 2016, 36(4): 516-524. doi: 10.11883/1001-1455(2016)04-0516-09 |
[9] | Zhao Xiao-long, Ma Tie-hua, Xu Peng, Fan Jin-biao. Acceleration signal test and analysis for projectile penetrating into concrete[J]. Explosion And Shock Waves, 2014, 34(3): 347-353. doi: 10.11883/1001-1455(2014)03-0347-07 |
[10] | Chai Chuan-guo, Pi Ai-guo, Wu Hai-jun, Huang Feng-lei. A calculation of penetration resistance during cratering for ogive-nose projectile into concrete[J]. Explosion And Shock Waves, 2014, 34(5): 630-635. doi: 10.11883/1001-1455(2014)05-0630-06 |
[11] | ZhangFeng-guo, LiuJun, LiangLong-he, LouJian-feng, WangZheng. Influenceofaggregateonpenetrationprocessof concretetargetwhennumericalmodeling[J]. Explosion And Shock Waves, 2013, 33(2): 217-221. doi: 10.11883/1001-1455(2013)02-0217-04 |
[12] | Lin Hua-ling, Ding Yu-qing, Tang Wen-hui. Factors influencing numerical simulation of concrete penetration[J]. Explosion And Shock Waves, 2013, 33(4): 425-429. doi: 10.11883/1001-1455(2013)04-0425-05 |
[13] | XuWei-fang, ZhangFang-ju, ChenYu-ze, . Experimentalstudyonpenetrationresponsesofthinconcretetargets[J]. Explosion And Shock Waves, 2013, 33(2): 169-174. doi: 10.11883/1001-1455(2013)02-0169-06 |
[14] | HE Xiang, XU Xiang-yun, SUN Gui-juan, SHEN Jun, YANG Jian-chao, JIN Dong-liang. Experimentalinvestigationonprojectileshigh-velocitypenetration intoconcretetarget[J]. Explosion And Shock Waves, 2010, 30(1): 1-6. doi: 10.11883/1001-1455(2010)01-0001-06 |
[15] | LI Zhi-kang, HUANG Feng-lei. A dynamic spherical cavity-expansion theory for concrete materials[J]. Explosion And Shock Waves, 2009, 29(1): 95-100. doi: 10.11883/1001-1455(2009)01-0095-06 |
[16] | HUANG Feng-lei, ZHANG Lei-lei, DUAN Zhuo-ping. Shaped charge with large cone angle for concrete target[J]. Explosion And Shock Waves, 2008, 28(1): 17-22. doi: 10.11883/1001-1455(2008)01-0017-06 |
[17] | PI Ai-guo, HUANG Feng-lei. Dynamic behavior of a slender projectile on oblique penetrating into concrete target[J]. Explosion And Shock Waves, 2007, 27(4): 331-338. doi: 10.11883/1001-1455(2007)04-0331-08 |
[18] | CHEN Xiao-wei, ZHANG Fang-ju, YANG Shi-quan, XIE Ruo-ze, GAO Hai-ying, XU Ai-ming, JIN Jian-ming, QU Ming. Mechanics of structural design of EPW(Ⅲ): Investigations on the reduced-scale tests[J]. Explosion And Shock Waves, 2006, 26(2): 105-214. doi: 10.11883/1001-1455(2006)02-0105-10 |
[19] | ZHOU Bu-kui, TANG De-gao, ZHOU Zao-sheng, WANG An-bao. Study of influence of hit velocity on the anti-penetration behavior of nubbly corundum concrete[J]. Explosion And Shock Waves, 2005, 25(1): 59-63. doi: 10.11883/1001-1455(2005)01-0059-05 |
[20] | ZHANG De-hai, ZHU Fu-sheng, XING Ji-bo. Application of beam-particle model to the prolem of concrete penetration[J]. Explosion And Shock Waves, 2005, 25(1): 85-89. doi: 10.11883/1001-1455(2005)01-0085-05 |
1. | 侯旭华,印立魁,曲乾坤,梁家栋,兰宇鹏,王君凤,杨芮,陈智刚. 宽速域条件下卵形弹侵彻规律研究. 弹箭与制导学报. 2024(04): 62-71 . ![]() | |
2. | 王振宁,尹建平,李旭东,伊建亚,张渝. 有限厚钢筋混凝土参数对破片侵彻性能的影响. 兵器装备工程学报. 2023(05): 180-185 . ![]() | |
3. | 朱少平,王志亮,熊峰. 卵形弹丸对混凝土侵彻动力响应数值研究. 合肥工业大学学报(自然科学版). 2022(02): 243-250 . ![]() | |
4. | 刘均伟,张先锋,刘闯,陈海华,熊玮,谈梦婷. 空腔膨胀理论靶体阻力模型及其应用研究进展. 爆炸与冲击. 2021(10): 4-30 . ![]() | |
5. | 邓勇军,陈小伟,钟卫洲,何丽灵. 弹体正侵彻钢筋混凝土靶的试验及数值模拟研究. 爆炸与冲击. 2020(02): 26-36 . ![]() | |
6. | 邓勇军,陈小伟,姚勇. 钢筋混凝土靶侵彻过程中空腔膨胀响应分区研究. 中国科学:物理学 力学 天文学. 2020(02): 34-51 . ![]() |