Citation: | WANG Lu, YANG Yang, XU Fei. An improved finite particle method for discontinuous interface problems[J]. Explosion And Shock Waves, 2019, 39(2): 024202. doi: 10.11883/bzycj-2017-0390 |
[1] |
MONAGHAN J J. Simulating free surface flows with SPH[J]. Journal of Computational Physics, 1994, 110:399-406. DOI: 10.1006/jcph.1994.1034.
|
[2] |
杨秀峰, 刘谋斌.SPH方法Delaunay三角刨分与自由液面重构[J].计算力学学报, 2016, 33(4):594-598. DOI: 10.7511/jslx201604027.
YANG Xiufeng, LIU Moubin. Delaunay triangulation and free surface extraction for SPH method[J]. Chinese Journal of Computational Mechanics, 2016, 33(4):594-598. DOI: 10.7511/jslx201604027.
|
[3] |
龙厅, 胡德安, 韩旭.FE-ISPH与FE-WCSPH模拟流固耦合问题的比较研究[C]//中国计算力学大会.贵阳, 2014: 547. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU201408004093.htm
|
[4] |
刘谋斌, 宗智, 常建忠.光滑粒子动力学方法的发展与应用[J].力学进展, 2011, 41(2):219-236. DOI: 10.6052/1000-0992-2011-2-lxjzJ2010-078.
LIU Moubin, ZONG Zhi, CHANG Jianzhong. Developments and applications of smoothed particle hydrodynamics[J]. Advances in Mechanics, 2011, 41(2):219-236. DOI: 10.6052/1000-0992-2011-2-lxjzJ2010-078.
|
[5] |
傅学金, 强洪夫, 杨月诚.固体介质中SPH方法的拉伸不稳定性问题研究进展[J].力学进展, 2007, 37(3):375-388. DOI: 10.3321/j.issn:1000-0992.2007.03.005.
FU Xuejin, QIANG Hongfu, YANG Yuecheng. Advances in the tensile instability of smoothed particle hydrodynamics applied to solid dynamics[J]. Advances in Mechanics, 2007, 37(3):375-388. DOI: 10.3321/j.issn:1000-0992.2007.03.005.
|
[6] |
LIU W K, JUN S, LI S, et al. Reproducing kernel particle methods for structure dynamics[J]. International Journal for Numerical Methods in Engineering, 1995, 38(10):1655-1679. DOI: 10.1002/nme.1620381005.
|
[7] |
CHEN J K, BERAUN J E. A generalized smoothed particle hydrodynamics method for nonlinear dynamic problem[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 190:225-239. DOI: 10.1016/S0045-7825(99)00422-3.
|
[8] |
章杰, 苏少卿, 郑宇, 等.改进SPH方法在陶瓷材料层裂数值模拟中的应用[J].爆炸与冲击, 2013, 33(4):401-407. DOI: 10.3969/j.issn.1001-1455.2013.04.011.
ZHANG Jie, SU Shaoqing, ZHENG Yu, et al. Application of modified SPH method to numerical simulation of ceramic spallation[J]. Explosion and Shock Waves, 2013, 33(4):401-407. DOI: 10.3969/j.issn.1001-1455.2013.04.011.
|
[9] |
LIU M B, LIU G R. Restoring particle consistency in smoothed particle hydrodynamics[J]. Applied Numerical Mathematics, 2006, 56(1):19-36. DOI: 10.1016/j.apnum.2005.02.012.
|
[10] |
郑兴, 段文洋.K2_SPH方法及其对二维非线性水波的模拟[J].计算物理, 2011, 28(5):659-666. DOI: 10.3969/j.issn.1001-246X.2011.05.004.
ZHENG Xing, DUAN Wenyang. K2_SPH Method and application for 2D nonlinear water wave simulation[J]. Chinese Journal of Computational Physics, 2011, 28(5):659-666. DOI: 10.3969/j.issn.1001-246X.2011.05.004.
|
[11] |
刘谋斌, 杨秀峰, 邵家儒.高精度SPH方法及其在海洋工程中的应用[C]//颗粒材料计算力学会议论文集.兰州, 2014: 39-41. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU201408001007.htm
|
[12] |
ADAMI S, HU X Y, ADAMS N A. A generalized wall boundary condition for smoothed particle hydrodynamics[J]. Journal of Computational Physics, 2012, 231(21):7057-7075. DOI: 10.1016/j.jcp.2012.05.005.
|
[13] |
LIU M B, SHAO J R, CHANG J Z. On the treatment of solid boundary in smoothed particle hydrodynamics[J]. Science China:Technological Sciences, 2012, 55(1):244-254. DOI: 10.1007/s11431-011-4663-y.
|
[14] |
LIU M B, LIU G R, LAM K Y. A one-dimensional meshfree particle formulation for simulating shock waves[J]. Shock Wave, 2003, 13:201-211. DOI: 10.1007/s00193-003-0207-0.
|
[15] |
XU F, ZHAO Y, YAN R, et al. Multi-dimensional discontinuous SPH method and its application to metal penetration analysis[J]. International Journal for Numerical Methods in Engineering, 2013, 93:1125-1146. DOI: 10.1002/nme.4414.
|
[16] |
闫蕊, 徐绯, 张岳青.DSPH方法的有效性验证及应用[J].爆炸与冲击, 2013, 33(2):133-139. DOI: 10.3969/j.issn.1001-1455.2013.02.004.
YAN Rui, XU Fei, ZHANG Yueqing. Validation of DSPH method and its application to physical problems[J]. Explosion and Shock Waves, 2013, 33(2):133-139. DOI: 10.3969/j.issn.1001-1455.2013.02.004.
|
[17] |
宋俊豪, 张超英, 梁朝湘, 等.RDSPH:一种适用于一维非连续条件的新SPH方法[J].广西师范大学学报(自然科学版), 2009, 27(3):9-13. DOI: 10.3969/j.issn.1001-6600.2009.03.003.
SONG Junhao, ZHANG Chaoying, LIANG Chaoxiang, et al. A new one-dimensional smoothed particle hydrodynamics method in simulating discontinuous problem[J], Journal of Guangxi Normal University (Natural Science Edition), 2009, 27(3):9-13. DOI: 10.3969/j.issn.1001-6600.2009.03.003.
|
[18] |
YANG Yang, XU Fei, ZHANG Meng, et al. An effective improved algorithm for finite particle method[J]. International Journal of Computational Methods, 2016, 13(4):1641009. DOI: 10.1142/S0219876216410097.
|
[19] |
MONAGHAN J J. Smoothed particle hydrodynamic[J]. Annual Review of Astronomy and Astrophysics, 1992, 30(1):543-574. DOI: 10.1146/annurev.aa.30.090192.002551.
|
[20] |
MONAGHAN J J, KAJTAR J. SPH particle boundary forces for arbitrary boundaries[J]. Computer Physics Communications, 2009, 180(10):1811-1820. DOI: 10.1016/j.cpc.2009.05.008.
|
1. | 鲜文双,刘伟,张凯,李阳超,舒海龙,翟红波. 基于量纲分析的浅埋炸药爆炸地表振动速度试验研究. 火工品. 2024(06): 84-88 . ![]() | |
2. | 陈春超,陈士海,张智宇,曾凡福,苏松. 台阶爆破模型试验下破碎岩石抛掷速度规律分析. 华侨大学学报(自然科学版). 2023(02): 157-165 . ![]() | |
3. | 朱颂波,徐振洋,张祚富,李政,郇宝乾. 考虑炮孔密集系数及高程影响下质点峰值速度的预测模型研究. 有色金属工程. 2023(09): 139-149 . ![]() | |
4. | 孙宝财,凌晓,周文海,王树江. 埋地输气管道对城市地下空间掘进爆破的力学响应. 爆破. 2022(03): 190-198 . ![]() | |
5. | 赵岩,王小敬,王海龙,王东升. 交叉隧道爆破振速回归分析及对比研究. 工程爆破. 2022(05): 121-127 . ![]() | |
6. | 梁瑞,胡才智,周文海,朱冕. 隧道掘进爆破载荷作用下埋地管道的振动峰值速度预测研究. 中国安全生产科学技术. 2021(05): 123-129 . ![]() | |
7. | 唐海,马谕杰,夏祥,朱帅帅,姜威振. 负高差地形爆破振动规律研究. 工程爆破. 2021(05): 16-25 . ![]() | |
8. | 杨茂森,陈永祥,郝润华. 露天煤矿超高台阶抛掷爆破振动效应评价. 爆破. 2021(04): 156-162 . ![]() | |
9. | 李新平,边兴,罗忆,吕均琳,任高峰. 地下洞室边墙爆破振动传播衰减规律研究. 岩土力学. 2020(06): 2063-2069 . ![]() | |
10. | 何理,钟东望,李鹏,宋琨,司剑峰. 下穿隧道爆破荷载激励下边坡振动预测及能量分析. 爆炸与冲击. 2020(07): 108-117 . ![]() | |
11. | 费鸿禄,孙晓宇,关福晨,刘雨. 水下深埋岩石爆破振动衰减规律研究. 爆破. 2020(03): 26-33+55 . ![]() | |
12. | Chen Li,Shufeng Liang,Yongchao Wang,Long Li,Dianshu Liu. Attenuation Parameters of Blasting Vibration by Fuzzy Nonlinear Regression Analysis. Journal of Beijing Institute of Technology. 2020(04): 520-525 . ![]() | |
13. | 叶海旺,袁尔君,雷涛,龙梅. 基于量纲分析的爆破振动质点峰值速度预测公式. 金属矿山. 2019(05): 56-61 . ![]() | |
14. | 万嗣鹏,张义平,陶铁军,池恩安,罗毅. 基于准岩体抗拉强度的爆破振动速度衰减公式改进. 金属矿山. 2019(07): 60-64 . ![]() |