Citation: | DENG Xiangyang, LUO Zhenxiong, LIU Shouxian, MENG Jianhua, TIAN Jianhua, HE Lihua. Wavelength-time mapping linear chirped fiber bragg grating sensor for measuring the wave-front position of detonation and shock wave[J]. Explosion And Shock Waves, 2019, 39(3): 034101. doi: 10.11883/bzycj-2017-0416 |
[1] |
HILL L G, BDZIL J B, ASLAM T D. Front curvature rate stick measurements and detonation shock dynamics calibration for PBX9502 over a wide temperature [C]//Proceeding of Eleventh Symposium (International) on Detonation. Colorado: Office of Naval Research, 1997: 1029−1037.
|
[2] |
BDZIL J B, FICKETT W, STEWART D S. Detonation shock dynamics: a new approach to modeling multi-dimensional detonation waves [C]//Proceedings of the Ninth Symposium (International) on Detonation. Portland: OR, 1989: 730−742.
|
[3] |
ASLAM T D, BDZIL J B, HILL L G. Extensions to DSD theory: analysis of PBX 9502 rate stick data [C]//Proceedings of the Eleventh International Detonation Symposium. Snowmass: CO, 1998: 21−29.
|
[4] |
徐森, 刘大斌, 彭金华, 等. 药柱冲击波在有机玻璃中的衰减特性研究 [J]. 高压物理学报, 2010, 24(6): 421–437 doi: 10.11858/gywlxb.2010.06.005
XU Sen, LIU Dabin, PENG Jinhua, et al. Study on the shock wave attenuation of the booster charge in the PMMA gap [J]. Chinese Journal of High Pressure Physics, 2010, 24(6): 421–437 doi: 10.11858/gywlxb.2010.06.005
|
[5] |
BENTEROUT J J, UDD E, WILKINS P, et al. In-situ continuous detonation velocity measurements using fiber-optic Bragg grating sensors [C]//Proceedings of the 34th International Pyrotechnics Seminar V1. Beaune, France, 2007: 309−322.
|
[6] |
HARE D E, HOLTKAMP D B, STRAND O T. Embedded fiber optic probes to measure detonation velocities using the photonic Doppler velocimeter: LLNL-PROC-425117 [R]. Livermore: Lawrence Livermore National Laboratory, 2010.
|
[7] |
MERCIER P, BENIER J, FRUGIER P A, et al. Nitromethane ignition observed with embedded PDV optical fibers [C]. EPJ Web of Conferences. EDP Sciences, 2010, 10: 00016.
|
[8] |
RODRIGUEZ G, STEVE M G. Ultrafast fiber Bragg grating interrogation for sensing in detonation and shock wave experiments [J]. Sensors, 2017, 17: 248.
|
[9] |
邓向阳, 刘寿先, 彭其先, 等. 测量炸药旁侧爆轰波速度的啁啾光纤布拉格光栅传感器技术 [J]. 爆炸与冲击, 2015, 35(2): 191–196 doi: 10.11883/1001-1455(2015)02-0191-06
DENG Xiangyang, LIU Shouxian, PENG Qixian, et al. Chirped fiber Bragg grating sensor for side detonation velocity measurement of the explosion [J]. Explosion and Shock Waves, 2015, 35(2): 191–196 doi: 10.11883/1001-1455(2015)02-0191-06
|
[10] |
PENG W, HAO L, LIU T L, et al. Detonation velocity measurement with chirped fiber Bragg grating [J]. Sensor, 2017, 17: 2252.
|
[11] |
GODA K, SOLLI D R, TSIA K K, et al. Theory of amplified dispersive Fourier transformation [J]. Physical Review A, 2009, 80(4): 043821.
|
[12] |
谭多望, 方青, 张光升, 等. 钝感炸药直径效应实验研究 [J]. 爆炸与冲击, 2003, 23(4): 300–304
TAN Duowang, FANG Qing, ZHANG Guangsheng, et al. Experimental study on the diameter effect for JB-9014 rate sticks [J]. Explosion and Shock Waves, 2003, 23(4): 300–304
|
[1] | ZHOU Dezheng, LI Xiaojie, WANG Xiaohong, WANG Yuxin, YAN Honghao. Analysis of internal load and dynamic response of vacuum explosion containment vessel with sand covered for explosive welding[J]. Explosion And Shock Waves, 2024, 44(10): 101407. doi: 10.11883/bzycj-2023-0455 |
[2] | ZHANG Zhifan, LI Hailong, ZHANG Guiyong, ZONG Zhi, JIANG Yichen. Action time sequence of underwater explosion shock waves and shaped charge projectiles[J]. Explosion And Shock Waves, 2023, 43(10): 102201. doi: 10.11883/bzycj-2022-0397 |
[3] | LIU Jun, SUN Zhiyuan, ZHANG Fengguo, WANG Pei. Simulation study of the recompression of metal spallation zone[J]. Explosion And Shock Waves, 2022, 42(3): 033101. doi: 10.11883/bzycj-2021-0262 |
[4] | WANG Min, WEN Heming. Numerical simulations of response and failure of carbon nanotube/carbon fibre reinforced plastic laminates under impact loading[J]. Explosion And Shock Waves, 2022, 42(3): 033102. doi: 10.11883/bzycj-2021-0050 |
[5] | CHENG Xiangli, ZHAO Hui, LI Linchuan, YE Haifu. Projectile target response model for normal penetration process based on mechanical vibration theory[J]. Explosion And Shock Waves, 2019, 39(9): 093301. doi: 10.11883/bzycj-2018-0242 |
[6] | XING Boyang, LIU Rongzhong, ZHANG Dongjiang, CHEN Liang, HOU Yunhui, GUO Rui. A mass model for behind-armor debris generated by normal penetration of a variable cross-section explosively-formed projectile into an armor steel plate[J]. Explosion And Shock Waves, 2019, 39(7): 074202. doi: 10.11883/bzycj-2018-0187 |
[7] | CHEN Xiaokun, LI Haitao, WANG Qiuhong, JIN Yongfei, DENG Jun, ZHANG Yanni. Antiknock analysis and structure optimization for coal mine cylindrical shell refuge capsule under gas explosion load[J]. Explosion And Shock Waves, 2018, 38(1): 124-132. doi: 10.11883/bzycj-2016-0248 |
[8] | WANG Wenjie, ZHANG Xianfeng, DENG Jiajie, ZHENG Yingmin, LIU Chuang. Analysis of projectile penetrating into mortar target with elliptical cross-section[J]. Explosion And Shock Waves, 2018, 38(1): 164-173. doi: 10.11883/bzycj-2017-0020 |
[9] | LI Xue-mei, WANG Xiao-song, WANG Peng-lai, LU Min, JIA Lu-feng. Spall of cylindrical copper by converging sliding detonation[J]. Explosion And Shock Waves, 2009, 29(2): 162-166. doi: 10.11883/1001-1455(2009)02-0162-05 |
[10] | ZHANG Lei, HU Shi-sheng, CHEN De-xing, ZHANG Shou-bao, YU Ze-qing, LIU Fei. Spall fracture properties of steel-fiber-reinforced concrete[J]. Explosion And Shock Waves, 2009, 29(2): 119-124. doi: 10.11883/1001-1455(2009)02-0119-06 |
[11] | CHEN Yong-tao, TANG Xiao-jun, LI Qing-zhong, HU Hai-bo, XU Yong-bo. Phase transition and abnormal spallation in pure iron[J]. Explosion And Shock Waves, 2009, 29(6): 637-641. doi: 10.11883/1001-1455(2009)06-0637-05 |
[12] | XIONG Jun, ZHOU Hai-bing, LIU Wen-tao, ZHANG Shu-dao, SUN Jin-shan. Spallation of steel tube driven by sliding detonation[J]. Explosion And Shock Waves, 2008, 28(2): 105-109. doi: 10.11883/1001-1455(2008)02-0105-05 |
[13] | ZHANG Lei, HU Shi-sheng, CHEN De-xing, ZHANG Shou-bao, YU Ze-qing, LIU Fei. Spall characteristics of concrete materials[J]. Explosion And Shock Waves, 2008, 28(3): 193-199. doi: 10.11883/1001-1455(2008)03-0193-07 |
[14] | TAN Duo-wang, SUN Cheng-wei. Progress in studies on shaped charge[J]. Explosion And Shock Waves, 2008, 28(1): 50-56. doi: 10.11883/1001-1455(2008)01-0050-07 |
[15] | JIANG Song-qing, LIU Wen-tao. Numerical modeling of spall fracture behavior in U-Nb alloys[J]. Explosion And Shock Waves, 2007, 27(6): 481-486. doi: 10.11883/1001-1455(2007)06-0481-06 |
[16] | ZHANG Xin-hua, TANG Zhi-ping, XU Wei-wei, TANG Xiao-jun, ZHENG Hang. Experimental study on characteristics of shock-induced phase transition and spallation in FeMnNi alloy[J]. Explosion And Shock Waves, 2007, 27(2): 103-108. doi: 10.11883/1001-1455(2007)02-0103-06 |
[17] | XIE Shu-gang, FAN Chun-lei, CHEN Da-nian, WANG Huan-ran. Experimental and numerical studies on spall of OFHC[J]. Explosion And Shock Waves, 2006, 26(6): 532-536. doi: 10.11883/1001-1445(2006)06-0532-05 |
[18] | TANG Xiao-jun, HU Hai-bo, LI Qing-zhong, ZHANG Xing-hua, TANG Zhi-ping, HU Ba-yi, TANG Tie-gang. Experimental studies on shock-induced phase transition in HR2 and other Fe-based materials[J]. Explosion And Shock Waves, 2006, 26(2): 115-120. doi: 10.11883/1001-1455(2006)02-0115-06 |
[19] | WANG Yong-gang, HE Hong-liang, CHEN Den-ping, WANG Li-li, JING Fu-qian. Comparison of different spall models for simulating spallation in ductile metals[J]. Explosion And Shock Waves, 2005, 25(5): 467-471. doi: 10.11883/1001-1455(2005)05-0467-05 |
[20] | ZHOU Xiang, LONG Yuan, YUE Xiao-bing, TANG Xian-shu. An engineering computing method for the velocity of explosively-formed-projectile(EFP) based on the law of energy conservation[J]. Explosion And Shock Waves, 2005, 25(4): 378-381. doi: 10.11883/1001-1455(2005)04-0378-04 |
1. | 李启月,李丽,黄海仙,肖宇航,魏新傲. 基于概率论的高边坡爆破振动安全预测及控制研究. 中国安全生产科学技术. 2024(12): 12-18 . ![]() | |
2. | 张云鹏,葛晓东,武旭,王杰. 爆破地震波入射角度对振动和放大效应的影响. 工程爆破. 2023(01): 122-129 . ![]() | |
3. | 高庆,杨润基,卢许佳,谢东武. 降雨及爆破扰动下某露天矿山顺层高陡岩质边坡稳定性的影响及优化. 有色金属(矿山部分). 2023(04): 52-57 . ![]() | |
4. | 贺建强. 爆破振动对白马铁矿露天边坡稳定性影响研究. 工程建设. 2023(07): 24-30 . ![]() | |
5. | 姚作强,冯春,刘天苹. 爆炸载荷下顺层台阶边坡渐进破坏规律数值分析. 力学与实践. 2023(06): 1363-1374 . ![]() | |
6. | 胡斌,刘霁,李京,马利遥,丁静,汤琦. 降雨入渗对含缓倾软弱夹层矿山边坡的稳定性影响机制研究. 有色金属工程. 2022(03): 112-119 . ![]() | |
7. | 杨建华,代金豪,姚池,胡英国,张小波,周创兵. 爆破开挖扰动下锚固节理岩质边坡位移突变特征与能量机理. 爆炸与冲击. 2022(03): 138-149 . ![]() | |
8. | 宋娟,王晋,胡敏,贺龙喜. 爆破作用下含后缘裂隙岩质边坡的断裂力学分析. 工程爆破. 2022(06): 33-41 . ![]() | |
9. | 闫长斌,张彦昌,陈艳国,徐晓. 考虑爆破累积损伤效应的含泥化夹层边坡滑移分析. 水利水运工程学报. 2021(01): 104-113 . ![]() | |
10. | 胡风明,宋健,闫磊,曲振宇,赵甜甜. 危岩带下锚碇基坑施工技术及爆破振动监测. 中外公路. 2021(01): 173-177 . ![]() | |
11. | 柯秋壁,周小平. 四川巴中谭家山石灰岩露天矿边坡安全隐患及处置对策. 中国矿业. 2021(04): 201-205 . ![]() | |
12. | 梁瑞,包娟,周文海. 基于边坡稳定性的临界损伤质点峰值速度研究. 长江科学院院报. 2021(05): 82-87+102 . ![]() | |
13. | 吴新霞,饶宇,胡英国,柴朝政. 基于边坡稳定性的爆破振动控制标准确定方法. 工程爆破. 2021(02): 11-18 . ![]() | |
14. | 孙明武,丘小强,官旭晖,张豪,BEAUCLAI Raymond Zemfack,张衍昊. 基于不同判别条件爆破振动安全阈值的研究. 有色金属(矿山部分). 2021(03): 32-36 . ![]() | |
15. | 周后友,池恩安,欧阳天云,于海阔,高正华. 爆破荷载作用下露天边坡稳定性分析. 爆破. 2021(02): 80-87 . ![]() | |
16. | 何怡,郭力,马冲. 考虑软弱夹层中岩土体应变软化特性的矿山边坡变形体渐进破坏分析. 安全与环境工程. 2020(02): 162-167+174 . ![]() | |
17. | 古鹏翔,骆俊晖,刘先林,马冲. 考虑滑带土蠕变特性的边坡长期稳定性分析. 安全与环境工程. 2020(04): 94-101 . ![]() | |
18. | 张耿城,郭连军,贾建军,梁尔祝,董英健. 某露天铁矿爆破振动对边坡的动态响应特征研究. 中国矿业. 2020(12): 165-169 . ![]() | |
19. | 朱帅帅,唐海,万文,马谕杰,王建龙,丁安松. 爆破荷载下露天矿高边坡振动速度阈值的确定及控制. 矿业工程研究. 2020(04): 20-26 . ![]() | |
20. | 王智德,江俐敏,祝文化,夏元友. 顺层岩质边坡爆破荷载作用下的振动传播规律研究. 爆破. 2019(01): 55-62+83 . ![]() | |
21. | 李海港,李仕杰,吴贤振,杨泽元. 爆破振动对尾矿库稳定性影响分析研究. 世界有色金属. 2019(04): 1-4 . ![]() | |
22. | 郑明新,伍明文. 爆破振动下偏压隧道洞口段边坡稳定性分析. 铁道科学与工程学报. 2019(08): 2018-2027 . ![]() | |
23. | 黄小明. 安徽某露天矿山爆破降振技术措施. 现代矿业. 2018(09): 203-205 . ![]() |