Volume 39 Issue 2
Feb.  2019
Turn off MathJax
Article Contents
YU Jianliang, JI Wentao, YAN Xingqing, YU Xiaozhe, HOU Yujie. Flame propagation characteristics of lycopodium dust explosion under explosion pressure accumulation conditions[J]. Explosion And Shock Waves, 2019, 39(2): 025401. doi: 10.11883/bzycj-2017-0436
Citation: YU Jianliang, JI Wentao, YAN Xingqing, YU Xiaozhe, HOU Yujie. Flame propagation characteristics of lycopodium dust explosion under explosion pressure accumulation conditions[J]. Explosion And Shock Waves, 2019, 39(2): 025401. doi: 10.11883/bzycj-2017-0436

Flame propagation characteristics of lycopodium dust explosion under explosion pressure accumulation conditions

doi: 10.11883/bzycj-2017-0436
  • Received Date: 2017-12-04
  • Rev Recd Date: 2018-02-06
  • Publish Date: 2019-02-05
  • An experimental setup which can withstand high pressure with good visibility was built. Flame propagation characteristics of lycopodium dust explosion were investigated under explosion pressure accumulation conditions. The experimental results showed that a space-dispersed fascicle-like flame structure was formed after the explosion of lycopodium dust under explosion pressure accumulation conditions. The flame front with a serrate structure was observed. However, on further increasing the dust concentration the flame continuity as well as the luminance increased and reached the top at the concentration of 750 g/m3. The velocity fluctuation during the flame propagation process of lycopodium dust explosion at different concentrations was found. But the fluctuation frequency decreased with the increase of dust concentration. The average flame propagation velocity increased and then decreased with the increase of dust concentration and reached the top at the dust concentration of 750 g/m3. The value of flame velocity was higher in the early stage, but lower in the later stage.
  • loading
  • [1]
    ABBASI T, ABBASI S A. Dust explosions:cases, causes, consequences, and control[J]. Journal of Hazardous Materials, 2007, 140(1):7-44. DOI: 10.1016/j.jhazmat.2006.11.007.
    [2]
    CHEN J L, DOBASHI R, HIRANO T. Mechanisms of flame propagation through combustible particle clouds[J]. Journal of Loss Prevention in the Process Industries, 1996, 9(3):225-229. DOI: 10.1016/0950-4230(96)00001-0.
    [3]
    JU W J, DOBASHI R, HIRANO T. Reaction zone structures and propagation mechanisms of flames in stearic acid particle clouds[J]. Journal of Loss Prevention in the Process Industries, 1998, 11(6):423-430.DOI:info:doi/ 10.1016/S0950-4230(98)00027-8.
    [4]
    HAN O S, YASHIMA M, MATSUDA T, et al. Behavior of flames propagating through lycopodium dust clouds in a vertical duct[J]. Journal of Loss Prevention in the Process industries, 2000, 13:449-457. doi: 10.1016/S0950-4230(99)00072-8
    [5]
    HAN O S, YASHIMA M, MATSUDA T, et al. A study of flame propagation mechanisms in lycopodium dust clouds based on dust particles' behavior[J]. Journal of Loss Prevention in the Process Industries, 2001, 14(3):153-160. DOI: 10.1016/S0950-4230(00)00049-8.
    [6]
    PROUST C. Flame propagation and combustion in some dust-air mixtures[J]. Journal of Loss Prevention in the Process Industries, 2006, 19(1):89-100. DOI: 10.1016/j.jlp.2005.06.026.
    [7]
    SUN J H, DOBASHI R, HIRANO T. Concentration profile of particles across a flame propagating through iron particle cloud[J]. Combustion and Flame, 2003, 134(4):381-387. doi: 10.1016/S0010-2180(03)00137-8
    [8]
    CAO W G, GAO W, PENG Y H, et al. Experimental study on the combustion sensitivity parameters and pre-combusted changes in functional groups of lignite coal dust[J]. Powder Technology, 2015, 283:512-518. DOI: 10.1016/j.powtec.2015.06.025.
    [9]
    GAO W, TOSHIO M, YU J L, et al. Flame propagation mechanisms in dust explosions[J]. Jouranal of Loss Prevention in the Process Industries, 2015, 36:186-194. DOI: 10.1016/j.jlp.2014.12.021.
    [10]
    GAO W, TOSHIO M, RONG J H, et al. Motion behaviors of the unburned particles ahead of flame front in hexadecanol dust explosion[J]. Powder Technology, 2015, 271:125-133. DOI: 10.1016/j.powtec.2014.11.003.
    [11]
    AMYOTTE P R, PEGG M J. Lycopodium dust explosions in a Hartmann bomb:effects of turbulence[J]. Journal of Loss Prevention in the Process Industries, 1989, 2(2):87-94. DOI: 10.1016/0950-4230(89)80004-X.
    [12]
    HAN O S, YASHIMA M, MATSUDA T, et al. Behavior of flames propagating through lycopodium dust clouds in a vertical duct[J]. Journal of Loss Prevention in the Process Industries, 2000, 13(6):449-457. DOI: 10.1016/S0950-4230(99)00072-8.
    [13]
    HAN O S, YASHIMA M, MATSUDA T, et al. A study of flame propagation mechanisms in lycopodium dust clouds based on dust particles' behavior[J]. Journal of Loss Prevention in the Process Industries, 2001, 14(3):153-160. DOI: 10.1016/S0950-4230(00)00049-8.
    [14]
    KHALIL Y F. Experimental determination of dust cloud deflagration parameters of selected hydrogen storage materials:complex metal hydrides, chemical hydrides, and adsorbents[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(1):96-103. DOI: 10.1016/j.jlp.2012.09.010.
    [15]
    SILVESTRINI M, GENOVA B, TRUJILLO F J L. Correlations for flame speed and explosion overpressure of dust clouds inside industrial enclosures[J]. Journal of Loss Prevention in the Process Industries, 2008, 21(4):374-392. DOI: 10.1016/j.jlp.2008.01.004.
    [16]
    高伟, 阿部俊太郎, 荣建忠, 等.气流特征对水平长管内石松子粉尘爆炸火焰结构的影响[J].爆炸与冲击, 2015, 35(3):372-379. DOI: 10.11883/1001-1455-(2015)03-0372-08.

    GAO Wei, ABE S, RONG Jianzhong, et al. Effect of airflow characteristics on flame structure for following lycopodium dust-air mixtures in a long horizontal tube[J]. Explosion and Shock Waves, 2015, 35(3):372-379. DOI: 10.11883/1001-1455-(2015)03-0372-08.
    [17]
    JI W T, YAN X Q, SUN H L, et al. Comparative analysis of the explosibility of several different hybrid mixtures[J]. Powder Technology, 2017, 325:42-48. DOI: 10.1016/j.powtec.2017.11.022.
    [18]
    喻健良, 纪文涛, 孙会利, 等.甲烷/石松子粉尘混合体系爆炸下限的变化规律[J].爆炸与冲击, 2017, 37(6):924-930. DOI: 10.11883/1001-1455(2017)06-0924-07.

    YU Jianliang, JI Wentao, SUN Huili, et al. Experimental investigation of the lower explosion limit of hybrid mixtures of methane and lycopodium dust[J]. Explosion and Shock Waves, 2017, 37(6):924-930. DOI: 10.11883/1001-1455(2017)06-0924-07.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (5908) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return