Citation: | MA Liying, LI Xiangdong, ZHOU Lanwei, LAN Xiaoying, GONG Xiaoze, YAO Zhijun. Study on wall damage of vessel in high-speed fragment impact liquid-filled vessel[J]. Explosion And Shock Waves, 2019, 39(2): 023302. doi: 10.11883/bzycj-2018-0009 |
[1] |
D'ALESSANDRO V. Modeling of tank vehicle dynamics by fluid sloshing coupled simulation[D]. Italy, 2012. https://www.politesi.polimi.it/handle/10589/56762
|
[2] |
LINGENFELTER A J, LIU D, REEDER M F. Time resolved flow field measurements of orifice entrainment during a hydrodynamic ram event[J]. Journal of Visualization, 2017, 20(1):63-74. DOI: 10.1007/s12650-016-0378-2.
|
[3] |
FOUREST T, LAURENS J M, DELETOMBE E, et al. Confined Rayleigh-Plesset equation for hydrodynamic ram analysis in thin-walled containers under ballistic impacts[J]. Thin-Walled Structures, 2015, 86:67-72. DOI: 10.1016/j.tws.2014.10.003.
|
[4] |
MOUSSA N A. The potential for fuel tank fire and hydrodynamic ram from uncontained aircraft engine debris: DOT/FAA/AR-96/95[R]. Springfield: National Technical Information Service, 1997.
|
[5] |
BALL R E, POWER H L, FUHS A E. Fuel tank wall response to hydraulic ram during the shock phase[J]. Journal of Aircraft, 1973, 10(9):571-572. DOI: 10.2514/3.44393.
|
[6] |
DISIMILE P J, DAVIS J, TOY N. Mitigation of shock waves within a liquid filled tank[J]. International Journal of Impact Engineering, 2011, 38(2):61-72. DOI: 10.1016/j.ijimpeng.2010.10.006.
|
[7] |
CHARLES A, DELETOMBE E, DUPAS J. A numerical study on cavity expansion in water:hydraulic ram under ballistic impacts[J]. Structures Under Shock and Impact Ⅻ, 2013, 126:203. DOI: 10.2495/SU120181.
|
[8] |
VARAS D, LÓPEZ-PUENTE J, ZAERA R. Numerical analysis of the hydrodynamic ram phenomenon in aircraft fuel tanks[J]. AIAA journal, 2012, 50(7):1621-1630. DOI: 10.2514/1.J051613.
|
[9] |
VARAS D, LÓPEZ-PUENTE J, ZAERA R. Experimental analysis of fluid-filled aluminium tubes subjected to high-velocity impact[J]. International Journal of Impact Engineering, 2009, 36(1):81-91. DOI: 10.1016/j.ijimpeng.2008.04.006.
|
[10] |
VARAS D, ZAERA R, LÓPEZ-PUENTE J. Numerical modelling of partially filled aircraft fuel tanks submitted to hydrodynamic ram[J]. Aerospace Science and technology, 2012, 16(1):19-28. DOI: 10.1016/j.ast.2011.02.003.
|
[11] |
VARAS D, ZAERA R, LÓPEZ-PUENTE J. Numerical modelling of the hydrodynamic ram phenomenon[J]. International Journal of Impact Engineering, 2009, 36(3):363-374. DOI:10.1016/j.ijimpeng. 2008.07.020.
|
[12] |
NISHIDA M, TANAKA K. Experimental study of perforation and cracking of water-filled aluminum tubes impacted by steel spheres[J]. International Journal of Impact Engineering, 2006, 32(12):2000-2016. DOI:10.1016/j.ijimpeng. 2005.06.010.
|
[13] |
KWON Y W, YANG K, ADAMS C. Modeling and simulation of high-velocity projectile impact on storage tank[J]. Journal of Pressure Vessel Technology, 2016, 138(4):041303. DOI: 10.1115/1.4032447.
|
[14] |
KWON Y, YUN K. Numerical parametric study of hydrodynamic ram[J]. International Journal of Multiphysics, 2017, 11(1):15-47. DOI: 10.21152/1750-9548.11.1.15.
|
[15] |
蒋运华, 徐胜利, 周杰.运动体小扰动下入水空泡试验研究[J].弹道学报, 2016, 28(1):81-86. DOI:10.3969/j.issn.1004-499X. 2016.01.015.
JIANG Yunhua, XU Shengli, ZHOU Jie. Experimental study on water entry cavity for vehicle with small perturbation[J]. Journal of Ballistics, 2016, 28(1):81-86. DOI:10.3969/j.issn.1004-499X. 2016.01.015.issn. 1004-499X. 2016.01.015.
|
[16] |
张伟, 郭子涛, 肖新科, 等.弹体高速入水特性实验研究[J].爆炸与冲击, 2011, 31(6):579-584. doi: 10.11883/1001-1455(2011)06-0579-06
ZHANG Wei, GUO Zitao, XIAO Xinke, et al. Experiment investigation on behaviors of projectile high-speed water entry[J]. Explosion and Shock Waves, 2011, 31(6):579-584. doi: 10.11883/1001-1455(2011)06-0579-06
|
[17] |
郭子涛.弹体入水特性及不同介质中金属靶的抗侵彻性能研究[D].哈尔滨: 哈尔滨工业大学, 2012. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D241209
|
[18] |
李典, 朱锡, 侯海量, 等.高速杆式弹体侵彻下蓄液结构载荷特性的有限元分析[J].爆炸与冲击, 2016, 36(1):1-8. DOI: 10.11883/1001-1455(2016)01-0001-08.
LI Dian, ZHU Xi, HOU Hailiang, et al. Finite element analysis of load characteristic of liquid-filed structure subjected to high velocity long-rod projectile penetration[J]. Explosion and Shock Waves, 2016, 36(1):1-8. DOI: 10.11883/1001-1455(2016)01-0001-08.
|
[19] |
仲强, 侯海量, 朱锡, 等.陶瓷/液舱复合结构抗侵彻数值分析[J].爆炸与冲击, 2017, 37(3):510-519. DOI: 10.11883/1001-1455(2017)03-0510-10.
ZHONG Qiang, HOU Hailiang, ZHU Xi, et al. Numerical analysis of penetration resistance of ceramic/fluid cabin composite structure[J]. Explosion and Shock Waves, 2017, 37(3):510-519. DOI: 10.11883/1001-1455(2017)03-0510-10.
|