Citation: | ZHANG Qimin, ZHANG Xu, ZHAO Kang, SHU Junxiang, ZHANG Rong, ZHONG Bin. Law of reaction growth of shock initiation on the TATB based insensitive explosive JB-9014[J]. Explosion And Shock Waves, 2019, 39(4): 041405. doi: 10.11883/bzycj-2018-0050 |
To find out about the patterns and regularities of the reaction growth of shock initiation on JB-9014 explosives, using aluminum-based multiple EMV, we conducted six one-dimensional planar impact experiments in the gun-power platform. Under different initial pressures (11.33−14.18 GPa), we measured the particle velocity versus time up(t) and wave-profiles in the JB-9014 explosive at 9 different distances from the impact plane, and recorded the position of the shock front with time x(t), successfully fitting the unreacted explosive JB-9014 Hugoniot relation. Furthermore, we obtained the time and distance to detonation are estimated according to both the wave-profiles and the x(t) trajectories from the shock wave tracker gauges.
[1] |
潘昊, 胡晓棉. 钝感炸药的超压爆轰与冲击起爆过程数值模拟 [J]. 爆炸与冲击, 2006, 26(2): 174–178. DOI: 10.11883/1001-1455(2006)02-0174-05
PAN Hao, HU Xiaomian. Numerical simulation for overdriven and shocking-to-detonation transition of insensitive high explosives [J]. Explosion and Shock Waves, 2006, 26(2): 174–178. DOI: 10.11883/1001-1455(2006)02-0174-05
|
[2] |
GUSTAVSEN R L, SHEFFIELD S A, ALCON R R, et al. Measurement of shock initiation in the tri-amino-tri-nitro- benzene based explosive PBX9502: wave forms embedded gauges and comparison of four different material lots [J]. Journal of Applied Physics, 2006, 99(11): 1–17. DOI: 10.1063/1.2195191.
|
[3] |
GUSTAVSEN R L, GEHR R J, ALCON R R, et al. Shock initiation of the tri-amino-tri-nitro-benzene based explosive PBX 9502 cooled to-55re [J]. Journal of Applied Physics, 2012, 112(7): 074909. DOI: 10.1063/1.4757599.
|
[4] |
张旭, 池家春, 冯民贤, 等. JB-9014钝感炸药冲击绝热线测量 [J]. 高压物理学报, 2001, 15(4): 304–308. DOI: 10.11858/gywlxb.2001.04.011
ZHANG Xu, CHI Jiachun, FENG Minxian, et al. Hugoniot relation of JB-9014 insensitive high explosive [J]. Chinese Journal of High Pressure Physics, 2001, 15(4): 304–308. DOI: 10.11858/gywlxb.2001.04.011
|
[5] |
李志鹏, 黄毅民, 何碧, 等. 用组合式电磁粒子速度计研究JOB-9003炸药的冲击起爆过程 [J]. 爆炸与冲击, 2006, 26(3): 269–272. DOI: 10.11883/1001-1455(2006)03-0269-04
LI Zhipeng, HUANG Yiming, HE Bi, et al. Electromagnetic gauge measurements of shock initiating JOB-9003 explosive [J]. Explosion and Shock Waves, 2006, 26(3): 269–272. DOI: 10.11883/1001-1455(2006)03-0269-04
|
[6] |
李金河, 訾攀登, 张旭, 等. 用组合式电磁粒子速度计研究一种活性材料的反应特性 [J]. 高压物理学报, 2017, 31(3): 309–314. DOI: 10.11858/gywlxb.2017.03.013
LI Jinhe, ZI Pandeng, ZHANG Xu, et al. Reaction characteristics of reactive material investigated by embedded electromagnetic velocity gauges [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 309–314. DOI: 10.11858/gywlxb.2017.03.013
|
[7] |
ZHANG Xu, WANG Yanfei, HUANG Wenbin, et al. Reaction buildup of PBX explosives JOB-9003 under different initiation pressures [J]. Journal of Energetic Materials, 2017, 35(2): 197–212. DOI: 10.1080/07370652.2016.1250841.
|
[8] |
刘杰, 王广军, 张旭, 等. HMX基PBX粒子速度测量的铝基组合电磁粒子速度计技术 [J]. 含能材料, 2016, 24(3): 300–305. DOI: 10.11943/j.issn.1006-9941.2016.03.016
LIU Jie, WANG Guangjun, ZHANG Xu, et al. Al-based electromagnetic particle velocity gauge technique of measuring the particle velocity of HMX-based PBX explosives [J]. Chinese Journal of Energetic Materials, 2016, 24(3): 300–305. DOI: 10.11943/j.issn.1006-9941.2016.03.016
|
[9] |
王延飞, 刘杰, 张旭, 等. 未反应炸药JOB-9003的JWL状态方程 [J]. 高压物理学报, 2016, 30(5): 387–391. DOI: 10.11858/gywlxb.2016.05.007
WANG Yanfei, LI Jie, ZHANG Xu, et al. JWL equation of state of unreacted JBO-9003 explosive [J]. Chinese Journal of High Pressure Physics, 2016, 30(5): 387–391. DOI: 10.11858/gywlxb.2016.05.007
|
[10] |
BURNS M J, GUSTAVSEN R L, BARTRAM B D. One-dimensional plate impact experiments on the cyclotetramethylene tetranitramine (HMX) based explosive EDC32 [J]. Journal of Applied Physics, 2012, 112: 064910. DOI: 10.1063/1.4752865.
|
1. | 罗刚,严荔,李文权,杨云生,张宇航,AHMED MD Elias,刘凤玲. 水下爆炸作用下悬浮隧道结构设计与优化. 中国公路学报. 2025(02): 47-59 . ![]() | |
2. | 张典典,何晖,石同幸. 爆炸损伤后起波钢筋混凝土梁吸能能力有限元分析. 低温建筑技术. 2024(04): 101-104 . ![]() | |
3. | 曾浩,袁鹏程,杨婷,徐慎春,吴成清. 地聚物超高性能混凝土复合板抗接触爆炸试验与数值模拟. 爆炸与冲击. 2024(06): 105-121 . ![]() | |
4. | 李爱群,晁磊,刘少波,吴宜峰,杨参天. 泡沫铝复合结构的制备研究进展与展望. 建筑结构. 2024(19): 90-98+168 . ![]() | |
5. | 魏广帅,汪维,杨建超,高伟亮. POZD涂覆钢板加固钢筋混凝土板抗爆性能研究. 材料导报. 2023(21): 289-296 . ![]() | |
6. | 雷升祥,赵伟,雷宇明. 城市地下空间工程韧性提升研究. 隧道建设(中英文). 2023(10): 1627-1636 . ![]() | |
7. | 刘超,孙启鑫,李会驰. 近爆作用下钢筋混凝土π梁防护性能的数值模拟. 振动与冲击. 2022(04): 223-231 . ![]() | |
8. | 周宏元,杜文钊,王小娟,张雪健,余尚江,张宏. 地冲击下新型脆断构件防护性能实验研究. 爆炸与冲击. 2022(07): 115-125 . ![]() | |
9. | 魏崇一,杨骥,彭春霖,李广帮,廖相巍. 泡沫金属的发展及制备方法. 鞍钢技术. 2022(05): 8-13+23 . ![]() | |
10. | 周辉,任辉启,吴祥云,易治,黄魁,穆朝民,王海露. 成层式防护结构中分散层研究综述. 爆炸与冲击. 2022(11): 3-28 . ![]() | |
11. | 陈沫衡,张典堂,钱坤,徐阳. 防爆墙材料与结构研究进展. 工程爆破. 2021(05): 93-101 . ![]() | |
12. | 张嵩,巴振宁,赵靖轩. 大直径盾构隧道复合泡沫铝保护层抗爆性能研究. 市政技术. 2020(03): 149-152 . ![]() | |
13. | 周宏元,李永胜,王小娟,杜建国,余尚江,陈荣华. 地冲击作用下基于泡沫混凝土的地下结构柔性防护. 北京工业大学学报. 2020(06): 533-539 . ![]() | |
14. | 刘飞,杨超志,夏明,贾鑫,汪剑辉. 钢筋混凝土板爆炸动态响应研究进展. 防护工程. 2020(05): 1-9 . ![]() |