Citation: | PAN Hao, WANG Shengtao, WU Zihui, HU Xiaomian. On strength of aluminum under high pressure and high strain rate based on crystal plasticity theory[J]. Explosion And Shock Waves, 2019, 39(2): 023102. doi: 10.11883/bzycj-2018-0084 |
[1] |
JOHNSON W. Impact strength of materials[M]. London:Edward Arnold, 1972.
|
[2] |
MEYERS M A. Dynamic behavior of materials[M]. New York:John Wiley & Sons, 1994.
|
[3] |
ZHAO F, WANG L, FAN D, et al. Macro-deformation twins in single-crystal aluminum[J]. Physical Review Letters, 2016, 116(7):075501. DOI: 10.1103/PhysRevLett.116.075501.
|
[4] |
VOGLER T J. On measuring the strength of metals at ultrahigh strain rates[J]. Journal of Applied Physics, 2009, 106(5):053530. DOI: 10.1063/1.3204777.
|
[5] |
ZHAO Z, MAO W, ROTERS F, et al. A texture optimization study for minimum earing in aluminium by use of a texture component crystal plasticity finite element method[J]. Acta Materialia, 2004, 52(4):1003-1012. DOI: 10.1016/j.actamat.2003.03.001.
|
[6] |
SALVADO F C, TEIXEIRA-DIAS F, WALLEY S M, et al. A review on the strain rate dependency of the dynamic viscoplastic response of FCC metals[J]. Progress in Materials Science, 2017, 88:186-231. DOI: 10.1016/j.pmatsci.2017.04.004.
|
[7] |
刘旭红, 黄西成, 陈裕泽, 等.强动载荷下金属材料塑性变形本构模型评述[J].力学进展, 2007, 37(3):361-374. doi: 10.3321/j.issn:1000-0992.2007.03.004
LIU Xuhong, HUANG Xicheng, CHEN Yuze, et al. A review on constitutive models for plastic deformation of metal materials under dynamic loading[J]. Advances in Mechanics, 2007, 37(3):361-374. doi: 10.3321/j.issn:1000-0992.2007.03.004
|
[8] |
朱建士, 胡晓棉, 王裴, 等.爆炸与冲击动力学若干问题研究进展[J].力学进展, 2010, 40(4):400-423. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201001612496
ZHU Jianshi, HU Xiaomian, WANG Pei, et al. A review on research progress in explosion mechanics and impact dynamics[J]. Advances in Mechanics, 2010, 40(4):400-423. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201001612496
|
[9] |
杨卫.细观力学和细观损伤力学[J].力学进展, 1992, 22(1):1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000004352004
YANG Wei. Meso-mechanics and meso-damage mechanics[J]. Advances in Mechanics, 1992, 22(1):1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000004352004
|
[10] |
白以龙, 汪海英, 夏蒙棼, 等.固体的统计细观力学-连接多个耦合的时空尺度[J].力学进展, 2006, 36(2):286-305. doi: 10.3321/j.issn:1000-0992.2006.02.012
BAI Yilong, WANG Haiying, XIA Mengfen, et al. Statistical mesomechanics of solid, linking coupled multiple space and time scales[J]. Advances in Mechanics, 2006, 32(2):286-305. doi: 10.3321/j.issn:1000-0992.2006.02.012
|
[11] |
ZERILLI F J, ARMSTRONG R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations[J]. Journal of Applied Physics, 1987, 61(5):1816-1825. DOI: 10.1063/1.338024.
|
[12] |
ASARO R J. Crystal plasticity[J]. Journal of Applied Mechanics, 1983, 50(4b):921-934. doi: 10.1115/1.3167205
|
[13] |
CLAYTON J D. Nonlinear Eulerian thermoelasticity for anisotropic crystals[J]. Journal of the Mechanics and Physics of Solids, 2013, 61(10):1983-2014. DOI: 10.1016/j.jmps.2013.05.009.
|
[14] |
AUSTIN R A, MCDOWELL D L. A dislocation-based constitutive model for viscoplastic deformation of FCC metals at very high strain rates[J]. International Journal of Plasticity, 2011, 27(1):1-24. DOI: 10.1016/j.ijplas.2010.03.002.
|
[15] |
MAYER A E, KHISHCHENKO K V, LEVASHOV P R, et al. Modeling of plasticity and fracture of metals at shock loading[J]. Journal of Applied Physics, 2013, 113(19):193508. DOI: 10.1063/1.4805713.
|
[16] |
LLOYD J T, CLAYTON J D, BECKER R, et al. Simulation of shock wave propagation in single crystal and polycrystalline aluminum[J]. International Journal of Plasticity, 2014, 60:118-144. DOI: 10.1016/j.ijplas.2014.04.012.
|
[17] |
MA A, ROTERS F, RAABE D. A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations[J]. Acta Materialia, 2006, 54(8):2169-2179. DOI: 10.1016/j.actamat.2006.01.005.
|
[18] |
ROTERS F, EISENLOHR P, HANTCHERLI L, et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling:Theory, experiments, applications[J]. Acta Materialia, 2010, 58(4):1152-1211. DOI: 10.1016/j.actamat.2009.10.058.
|
[19] |
MARIN E B, DAWSON P R. On modelling the elasto-viscoplastic response of metals using polycrystal plasticity[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 165(1):1-21. DOI: 10.1016/S0045-7825(98)00034-6.
|
[20] |
KALIDINDI S R, BRONKHORST C A, ANAND L. Crystallographic texture evolution in bulk deformation processing of FCC metals[J]. Journal of the Mechanics and Physics of Solids, 1992, 40(3):537-569. DOI: 10.1016/0022-5096(92)80003-9.
|
[21] |
THOMAS J F. Third-order elastic constants of aluminum[J]. Physical Review, 1968, 175:955-962. DOI: 10.1103/PhysRev.175.955.
|
[22] |
FOLLANSBEE P S, KOCKS U F. A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable[J]. Acta Metallurgica, 1988, 36(1):81-93. DOI: 10.1016/0001-6160(88)90030-2.
|
[23] |
KRASNIKOV V S, MAYER A E, YALOVETS A P. Dislocation based high-rate plasticity model and its application to plate-impact and ultra-short electron irradiation simulations[J]. International Journal of Plasticity, 2011, 27(8):1294-1308. DOI: 10.1016/j.ijplas.2011.02.008.
|
[24] |
BORODIN E N, MAYER A E. Structural model of mechanical twinning and its application for modeling of the severe plastic deformation of copper rods in Taylor impact tests[J]. International Journal of Plasticity, 2015, 74:141-157. DOI: 10.1016/j.ijplas.2015.06.006.
|
[25] |
TAYLOR G I. The mechanism of plastic deformation of crystals:Part Ⅰ. Theoretical[J]. Proceedings of the Royal Society of London:Series A, Containing Papers of a Mathematical and Physical Character, 1934, 145(855):362-387. DOI: 10.1098/rspa.1934.0106.
|
[26] |
TAYLOR G I. Plastic strain rate in metals[Z]. Twenty-eight May Lecture to the Institute of Metals, 1938.
|
[27] |
KALIDINDI S R, BRONKHORST C A, ANAND L. On the accuracy of the Taylor assumption in polycrystalline plasticity[M]//Anisotropy and localization of plastic deformation. Springer Netherlands, 1991: 139-142.
|
[28] |
HARTLEY C S, DAWSON P R, BOYCE D E, et al. A comparison of deformation textures and mechanical properties predicted by different crystal plasticity codes[R]. Air Force Research Laboratory, Materials and Manufacturing Directorate, 2008.
|
[29] |
HUANG H, ASAY J R. Reshock and release response of aluminum single crystal[J]. Journal of Applied Physics, 2007, 101(6):063550. DOI: 10.1063/1.2655571.
|
[30] |
MAYER A E, KHISHCHENKO K V, LEVASHOV P R, et al. Modeling of plasticity and fracture of metals at shock loading[J]. Journal of Applied Physics, 2013, 113(19):193508. DOI: 10.1063/1.4805713.
|
[31] |
VOGLER T J, AO T, ASAY J R. High-pressure strength of aluminum under quasi-isentropic loading[J]. International Journal of Plasticity, 2009, 25(4):671-694. DOI: 10.1016/j.ijplas.2008.12.003.
|
[32] |
AUSTIN R A, MCDOWELL D L. Parameterization of a rate-dependent model of shock-induced plasticity for copper, nickel, and aluminum[J]. International Journal of Plasticity, 2012, 32:134-154. DOI: 10.1016/j.ijplas.2011.11.002.
|