Volume 39 Issue 2
Feb.  2019
Turn off MathJax
Article Contents
PAN Hao, WANG Shengtao, WU Zihui, HU Xiaomian. On strength of aluminum under high pressure and high strain rate based on crystal plasticity theory[J]. Explosion And Shock Waves, 2019, 39(2): 023102. doi: 10.11883/bzycj-2018-0084
Citation: PAN Hao, WANG Shengtao, WU Zihui, HU Xiaomian. On strength of aluminum under high pressure and high strain rate based on crystal plasticity theory[J]. Explosion And Shock Waves, 2019, 39(2): 023102. doi: 10.11883/bzycj-2018-0084

On strength of aluminum under high pressure and high strain rate based on crystal plasticity theory

doi: 10.11883/bzycj-2018-0084
  • Received Date: 2018-03-16
  • Rev Recd Date: 2018-05-24
  • Publish Date: 2019-02-05
  • Dynamic behaviors of metal materials are very complex under extreme loading conditions such as high pressure and high strain rate loading. Actually, many mechanisms and effects are contained in the dynamic response of metal materials. In this paper, a thermoelastic-viscoplastic crystal plasticity model is developed to study the plastic deformation of aluminum (Al) materials under high pressure and high strain rate loading. In the model for single crystal, both the thermally-activated mechanism and the phonon drag mechanism are considered for dislocation glide which make the model applicable for a much wide deformation rate range. In addition, the density of the mobile and immobile dislocation is formulated according to the annihilation and multiplication mechanism. A general harden model is utilized to take strain harden, pressure harden and temperature soften into consideration. Moreover, a high-order Euler elastic equation is adopted to describe the non-linear elastic deformation of the materials in large elastic deformation. Furthermore, based on the model developed for single crystal plastic deformation, a polycrystalline model is developed according to the Taylor model and the crystal plasticity finite element method, respectively. The dislocation glide speed in Al materials is predicted by the model and the results agree quite well with the experimental results in a wide shear stress range because both thermally-activated mechanism and phonon drag mechanism are considered for dislocation glide. With the model, the shear strengths of both single crystal and polycrystalline are predicted, and it is found out that the shear strength of Al materials increases with increasing of the load pressure. Besides, significant anisotropy of the shear strength is revealed for single crystal Al materials although it is a typical FCC crystal with high symmetry. Finally, texture evolution of polycrystalline Al materials is studied with the model and the preferred orientation effect of the crystal is found for different loading pressures. Moreover, the preferred orientation effect is more significant for high loading pressure.
  • loading
  • [1]
    JOHNSON W. Impact strength of materials[M]. London:Edward Arnold, 1972.
    [2]
    MEYERS M A. Dynamic behavior of materials[M]. New York:John Wiley & Sons, 1994.
    [3]
    ZHAO F, WANG L, FAN D, et al. Macro-deformation twins in single-crystal aluminum[J]. Physical Review Letters, 2016, 116(7):075501. DOI: 10.1103/PhysRevLett.116.075501.
    [4]
    VOGLER T J. On measuring the strength of metals at ultrahigh strain rates[J]. Journal of Applied Physics, 2009, 106(5):053530. DOI: 10.1063/1.3204777.
    [5]
    ZHAO Z, MAO W, ROTERS F, et al. A texture optimization study for minimum earing in aluminium by use of a texture component crystal plasticity finite element method[J]. Acta Materialia, 2004, 52(4):1003-1012. DOI: 10.1016/j.actamat.2003.03.001.
    [6]
    SALVADO F C, TEIXEIRA-DIAS F, WALLEY S M, et al. A review on the strain rate dependency of the dynamic viscoplastic response of FCC metals[J]. Progress in Materials Science, 2017, 88:186-231. DOI: 10.1016/j.pmatsci.2017.04.004.
    [7]
    刘旭红, 黄西成, 陈裕泽, 等.强动载荷下金属材料塑性变形本构模型评述[J].力学进展, 2007, 37(3):361-374. doi: 10.3321/j.issn:1000-0992.2007.03.004

    LIU Xuhong, HUANG Xicheng, CHEN Yuze, et al. A review on constitutive models for plastic deformation of metal materials under dynamic loading[J]. Advances in Mechanics, 2007, 37(3):361-374. doi: 10.3321/j.issn:1000-0992.2007.03.004
    [8]
    朱建士, 胡晓棉, 王裴, 等.爆炸与冲击动力学若干问题研究进展[J].力学进展, 2010, 40(4):400-423. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201001612496

    ZHU Jianshi, HU Xiaomian, WANG Pei, et al. A review on research progress in explosion mechanics and impact dynamics[J]. Advances in Mechanics, 2010, 40(4):400-423. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201001612496
    [9]
    杨卫.细观力学和细观损伤力学[J].力学进展, 1992, 22(1):1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000004352004

    YANG Wei. Meso-mechanics and meso-damage mechanics[J]. Advances in Mechanics, 1992, 22(1):1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000004352004
    [10]
    白以龙, 汪海英, 夏蒙棼, 等.固体的统计细观力学-连接多个耦合的时空尺度[J].力学进展, 2006, 36(2):286-305. doi: 10.3321/j.issn:1000-0992.2006.02.012

    BAI Yilong, WANG Haiying, XIA Mengfen, et al. Statistical mesomechanics of solid, linking coupled multiple space and time scales[J]. Advances in Mechanics, 2006, 32(2):286-305. doi: 10.3321/j.issn:1000-0992.2006.02.012
    [11]
    ZERILLI F J, ARMSTRONG R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations[J]. Journal of Applied Physics, 1987, 61(5):1816-1825. DOI: 10.1063/1.338024.
    [12]
    ASARO R J. Crystal plasticity[J]. Journal of Applied Mechanics, 1983, 50(4b):921-934. doi: 10.1115/1.3167205
    [13]
    CLAYTON J D. Nonlinear Eulerian thermoelasticity for anisotropic crystals[J]. Journal of the Mechanics and Physics of Solids, 2013, 61(10):1983-2014. DOI: 10.1016/j.jmps.2013.05.009.
    [14]
    AUSTIN R A, MCDOWELL D L. A dislocation-based constitutive model for viscoplastic deformation of FCC metals at very high strain rates[J]. International Journal of Plasticity, 2011, 27(1):1-24. DOI: 10.1016/j.ijplas.2010.03.002.
    [15]
    MAYER A E, KHISHCHENKO K V, LEVASHOV P R, et al. Modeling of plasticity and fracture of metals at shock loading[J]. Journal of Applied Physics, 2013, 113(19):193508. DOI: 10.1063/1.4805713.
    [16]
    LLOYD J T, CLAYTON J D, BECKER R, et al. Simulation of shock wave propagation in single crystal and polycrystalline aluminum[J]. International Journal of Plasticity, 2014, 60:118-144. DOI: 10.1016/j.ijplas.2014.04.012.
    [17]
    MA A, ROTERS F, RAABE D. A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations[J]. Acta Materialia, 2006, 54(8):2169-2179. DOI: 10.1016/j.actamat.2006.01.005.
    [18]
    ROTERS F, EISENLOHR P, HANTCHERLI L, et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling:Theory, experiments, applications[J]. Acta Materialia, 2010, 58(4):1152-1211. DOI: 10.1016/j.actamat.2009.10.058.
    [19]
    MARIN E B, DAWSON P R. On modelling the elasto-viscoplastic response of metals using polycrystal plasticity[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 165(1):1-21. DOI: 10.1016/S0045-7825(98)00034-6.
    [20]
    KALIDINDI S R, BRONKHORST C A, ANAND L. Crystallographic texture evolution in bulk deformation processing of FCC metals[J]. Journal of the Mechanics and Physics of Solids, 1992, 40(3):537-569. DOI: 10.1016/0022-5096(92)80003-9.
    [21]
    THOMAS J F. Third-order elastic constants of aluminum[J]. Physical Review, 1968, 175:955-962. DOI: 10.1103/PhysRev.175.955.
    [22]
    FOLLANSBEE P S, KOCKS U F. A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable[J]. Acta Metallurgica, 1988, 36(1):81-93. DOI: 10.1016/0001-6160(88)90030-2.
    [23]
    KRASNIKOV V S, MAYER A E, YALOVETS A P. Dislocation based high-rate plasticity model and its application to plate-impact and ultra-short electron irradiation simulations[J]. International Journal of Plasticity, 2011, 27(8):1294-1308. DOI: 10.1016/j.ijplas.2011.02.008.
    [24]
    BORODIN E N, MAYER A E. Structural model of mechanical twinning and its application for modeling of the severe plastic deformation of copper rods in Taylor impact tests[J]. International Journal of Plasticity, 2015, 74:141-157. DOI: 10.1016/j.ijplas.2015.06.006.
    [25]
    TAYLOR G I. The mechanism of plastic deformation of crystals:Part Ⅰ. Theoretical[J]. Proceedings of the Royal Society of London:Series A, Containing Papers of a Mathematical and Physical Character, 1934, 145(855):362-387. DOI: 10.1098/rspa.1934.0106.
    [26]
    TAYLOR G I. Plastic strain rate in metals[Z]. Twenty-eight May Lecture to the Institute of Metals, 1938.
    [27]
    KALIDINDI S R, BRONKHORST C A, ANAND L. On the accuracy of the Taylor assumption in polycrystalline plasticity[M]//Anisotropy and localization of plastic deformation. Springer Netherlands, 1991: 139-142.
    [28]
    HARTLEY C S, DAWSON P R, BOYCE D E, et al. A comparison of deformation textures and mechanical properties predicted by different crystal plasticity codes[R]. Air Force Research Laboratory, Materials and Manufacturing Directorate, 2008.
    [29]
    HUANG H, ASAY J R. Reshock and release response of aluminum single crystal[J]. Journal of Applied Physics, 2007, 101(6):063550. DOI: 10.1063/1.2655571.
    [30]
    MAYER A E, KHISHCHENKO K V, LEVASHOV P R, et al. Modeling of plasticity and fracture of metals at shock loading[J]. Journal of Applied Physics, 2013, 113(19):193508. DOI: 10.1063/1.4805713.
    [31]
    VOGLER T J, AO T, ASAY J R. High-pressure strength of aluminum under quasi-isentropic loading[J]. International Journal of Plasticity, 2009, 25(4):671-694. DOI: 10.1016/j.ijplas.2008.12.003.
    [32]
    AUSTIN R A, MCDOWELL D L. Parameterization of a rate-dependent model of shock-induced plasticity for copper, nickel, and aluminum[J]. International Journal of Plasticity, 2012, 32:134-154. DOI: 10.1016/j.ijplas.2011.11.002.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (6759) PDF downloads(95) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return