Volume 39 Issue 6
Jun.  2019
Turn off MathJax
Article Contents
SUN Yusong, ZHOU Suihua, ZHANG Xiaobing, SUN Yuming. Three-dimensional vertical free high-speed water-entry impact of rigid sphere[J]. Explosion And Shock Waves, 2019, 39(6): 063301. doi: 10.11883/bzycj-2018-0094
Citation: SUN Yusong, ZHOU Suihua, ZHANG Xiaobing, SUN Yuming. Three-dimensional vertical free high-speed water-entry impact of rigid sphere[J]. Explosion And Shock Waves, 2019, 39(6): 063301. doi: 10.11883/bzycj-2018-0094

Three-dimensional vertical free high-speed water-entry impact of rigid sphere

doi: 10.11883/bzycj-2018-0094
  • Received Date: 2018-03-22
  • Rev Recd Date: 2018-08-10
  • Available Online: 2019-04-25
  • Publish Date: 2019-06-01
  • At the initial stage of water entry, the water surrounding of the rigid sphere will show strong nonlinear characteristics. However, there are no exact three-dimensional effects in impact problem within the Wagner theory. Based on the non-viscous incompressible flow model, this paper considered fluid elasticity, used the micro boundary motion equivalent method to analyze the moving boundary, and based on the theory of energy conservation, which considered the loss of kinetic energy, analyzed the three-dimensional flow of the fluid around the rigid sphere during high-speed water-entry vertically, then established the analytical model which can calculate the water-entry impact of rigid sphere, and the analytical model is verified by an FEM model of multi-material ALE method. Base on the analytical model, this paper also analyzed the influencing factors of impact. The analytical model provides a fast algorithm for calculating the high-speed water-entry impact of structure, and has certain theoretical significance and engineering application value.
  • loading
  • [1]
    WAGNER V H. Phenomena associated with impacts and sliding on liquid surfaces [J]. Zeitschrift fur Angewandte Mathematik und Mechanik, 1932, 12(4): 193–215. doi: 10.1002/(ISSN)1521-4001
    [2]
    MAY A, WOODHULL J C. Drag coefficients of steel spheres entering water vertically [J]. Journal of Applied Physics, 1948, 19: 1109–1121. doi: 10.1063/1.1715027
    [3]
    KOROBKIN A A, PUKHNACHOV V V. Initial stage of water impact [J]. Annual Review of Fluid Mechanics, 1998, 20: 159–185.
    [4]
    SCOLAN Y M, KOROBKIN A A. Three-dimensional theory of water impact: Part 1: Inverse Wagner problem [J]. Journal of Fluid Mechanics, 2001, 440: 293–326.
    [5]
    MOHAMMAD J, MAURIZIO P. Water entry of compliant slender bodies: theory and experiments [J]. International Journal of Mechanical Sciences, 2017, 13(59): 1–16.
    [6]
    宋保维, 杜晓旭, 孟锐, 等. 空投水雷入水冲击力仿真 [J]. 鱼雷技术, 2008, 16(3): 6–12. doi: 10.3969/j.issn.1673-1948.2008.03.002

    SONG Baowei, DU Xiaoxu, MENG Rui, et al. Numerical simulation of water-entry impact force for air-launched mine [J]. Torpedo Technology, 2008, 16(3): 6–12. doi: 10.3969/j.issn.1673-1948.2008.03.002
    [7]
    王永虎, 石秀华, 王鹏, 等. 平头尖拱体斜入水冲击理论建模与仿真 [J]. 鱼雷技术, 2008, 16(1): 14–17. doi: 10.3969/j.issn.1673-1948.2008.01.004

    WANG Yonghu, SHI Xiuhua, WANG Peng, et al. Modeling and simulation of oblique water-entry of disk ogive [J]. Torpedo Technology, 2008, 16(1): 14–17. doi: 10.3969/j.issn.1673-1948.2008.01.004
    [8]
    孙士丽, 吴国雄. 有限水深中非轴对称体斜向入水抨击问题研究 [J]. 水动力学研究与进展, 2013, 28(4): 445–451.

    SUN Shili, WU Guoxiong. Oblique entry of non-axisymmetric bodies into water of finite depth [J]. Chinese Journal of Hydrodynamics, 2013, 28(4): 445–451.
    [9]
    王健, 赵庆彬, 陶钢, 等. 火箭撬水刹车高速入水冲击数值模拟 [J]. 爆炸与冲击, 2010, 30(6): 628–632. DOI: 10.11883/1001-1455(2010)06-0628-05.

    WANG Jian, ZHAO Qingbin, TAO Gang, et al. Numerical simulation on rocket sled water-brake high-speed water-entry impact [J]. Explosion and Shock Waves, 2010, 30(6): 628–632. DOI: 10.11883/1001-1455(2010)06-0628-05.
    [10]
    马庆鹏, 魏英杰, 王聪, 等. 不同头型运动体高速入水空泡数值模拟 [J]. 哈尔滨工业大学学报, 2014, 46(11): 24–29. doi: 10.11918/j.issn.0367-6234.2014.11.004

    MA Qingpeng, WEI Yingjie, WANG Cong, et al. Numerical simulation of high-speed water entry cavity of cylinders [J]. Journal of Harbin Institute of Technology, 2014, 46(11): 24–29. doi: 10.11918/j.issn.0367-6234.2014.11.004
    [11]
    朱珠, 袁绪龙. 柱体高速入水冲击载荷与空泡特性 [J]. 计算机仿真, 2014, 31(3): 29–33. doi: 10.3969/j.issn.1006-9348.2014.03.007

    ZHU Zhu, YUAN Xulong. High-speed water-entry impact and cavity characters of cylinder [J]. Computer Simulation, 2014, 31(3): 29–33. doi: 10.3969/j.issn.1006-9348.2014.03.007
    [12]
    OGER G, DORING M, ALESSANDRINI B, et al. Two-dimensional SPH simulations of wedge water entries [J]. Journal of Computational Physics, 2006, 213: 803–822. doi: 10.1016/j.jcp.2005.09.004
    [13]
    张伟, 黄威, 任鹏, 等. 高速弹体水平入水产生冲击波特性 [J]. 哈尔滨工业大学学报, 2016, 48(4): 37–41.

    ZHANG Wei, HUANG Wei, REN Peng, et al. The underwater shock wave characteristics caused by high speed horizontal water entry projectiles [J]. Journal of Harbin Institute of Technology, 2016, 48(4): 37–41.
    [14]
    王永虎, 石秀华. 入水冲击问题研究的现状与进展 [J]. 爆炸与冲击, 2008, 28(3): 276–282. DOI: 10.11883/1001-1455(2008)03-0276-07.

    WANG Yonghu, SHI Xiuhua. Review on research and development of water-entry impact problem [J]. Explosion and Shock Waves, 2008, 28(3): 276–282. DOI: 10.11883/1001-1455(2008)03-0276-07.
    [15]
    秦红德, 赵林岳, 申静. 入水冲击问题综述 [J]. 哈尔滨工业大学学报, 2011, 43: 152–157.

    QIN Hongde, ZHAO Linyue, SHEN Jing. Review of water entry problem [J]. Journal of Harbin Institute of Technology, 2011, 43: 152–157.
    [16]
    LEE M, LONGORIA R G, WILSON D E. Ballistic waves in high-speed water entry [J]. Journal of Fluids and Structures, 1997, 11: 819–844. doi: 10.1006/jfls.1997.0103
    [17]
    马庆鹏, 魏英杰, 王聪, 等. 锥头圆柱体高速入水空泡数值模拟 [J]. 北京航空航天大学学报, 2014, 40(2): 204–209.

    MA Qingpeng, WEI Yingjie, WANG Cong, et al. Numerical simulation of high-speed water-entry cavity of cone cylinder [J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(2): 204–209.
    [18]
    何春涛. 典型运动体入水过程多相流动特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2012: 33−36.

    HE Chuntao. Study on multiphase flow of typical body during water entry [D]. Harbin: Harbin Institute of Technology, 2012: 33−36.
    [19]
    MAY A. Water entry and the cavity-running behavior of missiles: ADA020429 [R]. Maryland: White Oak Laboratory, 1975.
    [20]
    顾建农, 张志宏, 王冲, 等. 旋转弹头水平入水空泡及弹道的实验研究 [J]. 兵工学报, 2012, 33(5): 540–544.

    GU Jiannong, ZHANG Zhihong, WANG Chong, et al. Experimental research for cavity and ballistics of a rotating bullet entraining water levelly [J]. Acta Armamentarii, 2012, 33(5): 540–544.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Article Metrics

    Article views (6317) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return