Citation: | YE Linzheng, ZHU Xijing, WANG Jianqing. Fluid-solid coupling model of micro-jet impact from acoustic cavitation bubble collapses near a wall and pit inversion analysis[J]. Explosion And Shock Waves, 2019, 39(6): 062201. doi: 10.11883/bzycj-2018-0118 |
[1] |
向文英, 李晓红, 卢义玉, 等. 空化射流效应的实验研究 [J]. 中国机械工程, 2006, 17(13): 1388–1391. DOI: 10.3321/j.issn:1004-132X.2006.13.016.
XIANG Wenying, LI Xiaohong, LU Yiyu, et al. Experimental study of domino effect on cavitating water jet [J]. China Mechanical Engineering, 2006, 17(13): 1388–1391. DOI: 10.3321/j.issn:1004-132X.2006.13.016.
|
[2] |
张阿漫, 姚熊亮. 近边界三维水下爆炸气泡动态特性研究 [J]. 爆炸与冲击, 2008, 28(2): 124–130. DOI: 10.11883/1001-1455(2008)02-0124-07.
ZHANG Aman, YAO Xiongliang. On dynamics of an underwater explosion bubble near a boundary [J]. Explosion and Shock Waves, 2008, 28(2): 124–130. DOI: 10.11883/1001-1455(2008)02-0124-07.
|
[3] |
张阿漫, 姚熊亮. 近自由面水下爆炸气泡的运动规律研究 [J]. 物理学报, 2008, 57(1): 339–353. DOI: 10.3321/j.issn:1000-3290.2008.01.054.
ZHANG Aman, YAO Xiongliang. Law of the underwater explosion bubble motion near free surface [J]. Acta Physica Sinica, 2008, 57(1): 339–353. DOI: 10.3321/j.issn:1000-3290.2008.01.054.
|
[4] |
李健, 黄红生, 林贤坤, 等. 基于VOF法的近自由面水下爆炸气泡运动数值模拟 [J]. 北京理工大学学报, 2016, 36(2): 122–127. DOI: 10.15918/j.tbit1001-0645.2016.02.003.
LI Jian, HUANG Hongsheng, LIN Xiankun, et al. Numerical study on bubble motion by underwater explosion near free surface based on VOF [J]. Transactions of Beijing Institute of Technology, 2016, 36(2): 122–127. DOI: 10.15918/j.tbit1001-0645.2016.02.003.
|
[5] |
郭娅, 唐文勇, 郑绍文, 等. 水下近场爆炸冲击波与射流载荷联合作用分析方法 [J]. 振动与冲击, 2014, 33(20): 26–30. DOI: 10.13465/j.cnki.jvs.2014.20.006.
GUO Ya, TANG Wenyong, ZHENG Shaowen, et al. Simulation method for the combined effect of underwater near-field shock wave and jet load [J]. Journal of Vibration and Shock, 2014, 33(20): 26–30. DOI: 10.13465/j.cnki.jvs.2014.20.006.
|
[6] |
沈壮志, 林书玉. 声场中水力空化泡的动力学特性 [J]. 物理学报, 2011, 60(08): 385–394. DOI: 10.7498/aps.60.084302.
SHEN Zhuangzhi, LIN Shuyu. Dynamical behaviors of hydrodynamic cavitation bubble under ultrasound field [J]. Acta Physica Sinica, 2011, 60(08): 385–394. DOI: 10.7498/aps.60.084302.
|
[7] |
郭策, 祝锡晶, 王建青, 等. 超声场下刚性界面附近溃灭空化气泡的速度分析 [J]. 物理学报, 2016, 65(4): 180–187. DOI: 10.7498/aps.65.044304.
GUO Ce, ZHU Xijing, WANG Jianqing, et al. Velocity analysis for collapsing cavitation bubble near a rigid wall under an ultrasound field [J]. Acta Physica Sinica, 2016, 65(4): 180–187. DOI: 10.7498/aps.65.044304.
|
[8] |
TAKAKUWA O, NISHIKAWA M, SOYAMA H. Estimation of the depth of surface modification layer induced by cavitation peening [J]. Journal of Materials Processing Technology, 2012, 212(8): 1716–1722. DOI: 10.1016/j.jmatprotec.2012.03.010.
|
[9] |
FRANC J P, RIONDET M, KARIMI A, et al. Material and velocity effects on cavitation erosion pitting [J]. Wear, 2012, 274: 248–259. DOI: 10.1016/j.wear.2011.09.006.
|
[10] |
KORNFELD M, SUVOROV L. On the destructive action of cavitation [J]. Journal of Applied Physics, 1944, 15(6): 495–506. DOI: 10.1063/1.1707461.
|
[11] |
GREGORČIČ P, PETKOVŠEK R, MOŽINA J. Investigation of a cavitation bubble between a rigid boundary and a free surface [J]. Journal of Applied Physics, 2007, 102(9): 21–23. DOI: 10.1063/1.2805645.
|
[12] |
PLESSET M S, CHAPMAN R B. Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary [J]. Journal of Fluid Mechanics, 1971, 47(2): 283–290. DOI: 10.1017/S0022112071001058.
|
[13] |
DULAR M. Hydrodynamic cavitation damage in water at elevated temperatures [J]. Wear, 2016, s346–347: 78–86. DOI: 10.1016/j.wear.2015.11.007.
|
[14] |
TZANAKIS I, ESKIN D G, GEORGOULAS A, et al. Incubation pit analysis and calculation of the hydrodynamic impact pressure from the implosion of an acoustic cavitation bubble [J]. Ultrasonics Sonochemistry, 2014, 21(2): 866–878. DOI: 10.1016/j.ultsonch.2013.10.003.
|
[15] |
REUTER F, METTIN R. Mechanisms of single bubble cleaning [J]. Ultrasonics Sonochemistry, 2015, 29: 550–562. DOI: 10.1016/j.ultsonch.2015.06.017.
|
[16] |
SOYAMA H, TAKEO F. Comparison between cavitation peening and shot peening for extending the fatigue life of a duralumin plate with a hole [J]. Journal of Materials Processing Technology, 2016, 227: 80–87. DOI: 10.1016/j.jmatprotec.2015.08.012.
|
[17] |
DULAR M, STOFFEL B, ŠIROK B. Development of a cavitation erosion model [J]. Wear, 2006, 261(5–6): 642–655. DOI: 10.1016/j.wear.2006.01.020.
|
[18] |
LI R, NINOKATA H, MORI M. A numerical study of impact force caused by liquid droplet impingement onto a rigid wall [J]. Progress in Nuclear Energy, 2011, 53(7): 881–885. DOI: 10.1016/j.pnucene.2011.03.002.
|
[19] |
LI N, ZHOU Q, CHEN X, et al. Liquid drop impact on solid surface with application to water drop erosion on turbine blades, Part I: Nonlinear wave model and solution of one-dimensional impact [J]. International Journal of Mechanical Sciences, 2008, 50(10): 1526–1542. DOI: 10.1016/j.ijmecsci.2008.08.001.
|
[20] |
CARNELLI D, KARIMI A, FRANC J P. Evaluation of the hydrodynamic pressure of cavitation impacts from stress–strain analysis and geometry of individual pits [J]. Wear, 2012, 289(5): 104–111. DOI: 10.1016/j.wear.2012.04.009.
|
[21] |
王艳辉. 1060铝搅拌摩擦焊温度场数值模拟 [D]. 苏州: 江苏科技大学, 2012: 24−25.
|
[22] |
CARNELLI D, KARIMI A, FRANC J P. Application of spherical nanoindentation to determine the pressure of cavitation impacts from pitting tests [J]. Journal of Materials Research, 2012, 27(1): 91–99. DOI: 10.1557/jmr.2011.259.
|
[23] |
ROY S C, FRANC J P, PELLONE C, et al. Determination of cavitation load spectra – Part 1: Static finite element approach [J]. Wear, 2015, s 344–345: 110–119. DOI: 10.1016/j.wear.2015.09.006.
|
[24] |
FRANCIS H A. Phenomenological analysis of plastic spherical indentation [J]. Journal of Engineering Materials and Technology Transactions of the Asme, 1976, 98(3): 272–281. DOI: 10.1115/1.3443378.
|
[25] |
GRANT M M, LUSH P A. Liquid impact on a bilinear elastic-plastic solid and its role in cavitation erosion [J]. Journal of Fluid Mechanics, 2006, 176: 237–252. DOI: 10.1017/S0022112087000648.
|
[26] |
CHEN H, LI J, CHEN D, et al. Damages on steel surface at the incubation stage of the vibration cavitation erosion in water [J]. Wear, 2008, 265(5–6): 692–698. DOI: 10.1016/j.wear.2007.12.011.
|
[27] |
PETKOVSEK R, GREGORCIC P. A laser probe measurement of cavitation bubble dynamics improved by shock wave detection and compared to shadow photography [J]. Journal of Applied Physics, 2007, 102(4): 044909–044909. DOI: 10.1063/1.2774000.
|
[28] |
ROBERTO G A S, SONG C, CLAUS-DIETER O. Fast transient microjets induced by hemispherical cavitation bubbles [J]. Journal of Fluid Mechanics, 2015, 767: 31–51. DOI: 10.1017/jfm.2015.33.
|
[29] |
FUTAKAWA M, NAOE T, KOGAWA H, et al. Micro-impact damage caused by mercury bubble collapse [J]. JSME International Journal, 2005, 48(4): 234–239. DOI: 10.1299/jsmea.48.234.
|