Volume 39 Issue 7
Jul.  2019
Turn off MathJax
Article Contents
CHEN Liangting, WANG Rui. Dynamic response of inner octagonal hollow reinforced concrete columns under lateral impact loading[J]. Explosion And Shock Waves, 2019, 39(7): 075103. doi: 10.11883/bzycj-2018-0119
Citation: CHEN Liangting, WANG Rui. Dynamic response of inner octagonal hollow reinforced concrete columns under lateral impact loading[J]. Explosion And Shock Waves, 2019, 39(7): 075103. doi: 10.11883/bzycj-2018-0119

Dynamic response of inner octagonal hollow reinforced concrete columns under lateral impact loading

doi: 10.11883/bzycj-2018-0119
  • Received Date: 2018-04-11
  • Rev Recd Date: 2018-09-17
  • Available Online: 2019-06-25
  • Publish Date: 2019-07-01
  • By comparing with their solid reinforced concrete columns counterparts, the inner hollow reinforced concrete columns are widely used as piers because of their advantages including light weight and good section extension. These piers will inevitably be hit by ships. In this paper, dynamic response experiments of six inner octagonal hollow reinforced concrete columns with and without steel tube are carried out. The failure mode, the impact force- versus-time curves and trans-middle displacement-versus-time curves were recorded. The impact resistance of the component is obtained by analysis of the impact height, the condition of the boundary and the thickness of the steel tube The experimental results show that failure modes of inner octagonal hollow reinforced concrete columns under lateral impact load can be divided into two categories: local failure (type I) and global failure (type II). As the height of impact increases, the damage seriousness of the component increases. Fixing two endings of the component can improve its impact resistance. The thickness of the steel tube has an obvious effect on the impact resistance of the component.
  • loading
  • [1]
    WANG R, HAN L H, HOU C C. Behavior of concrete filled steel tubular (CFST) members under lateral impact: experiment and FEA model [J]. Journal of Constructional Steel Research, 2013, 80: 188–201. DOI: 10.1016/j.jcsr.2012.09.003.
    [2]
    王蕊, 李珠, 任够平, 等. 侧向冲击载荷作用下钢管混凝土梁动力响应的实验和理论研究 [J]. 工程力学, 2008, 25(6): 75–93. DOI: 1000-4750(2008)06-0075-06.

    WANG Rui, LI Zhu, REN Gouping, et al. Study on dynamic response of concrete filled steel tube under lateral impact loading [J]. Engineering Mechanics, 2008, 25(6): 75–93. DOI: 1000-4750(2008)06-0075-06.
    [3]
    任够平, 李珠, 王蕊. 低速侧向冲击下钢管混凝土柱挠度研究 [J]. 工程力学, 2008, 25(5): 170–175. DOI: 1000-4750(2008)05-0170-06.

    REN Gouping, LI Zhu, WANG Rui. The deflection of concrete filled steel tubular column under lateral impact at low speed [J]. Engineering Mechanics, 2008, 25(5): 170–175. DOI: 1000-4750(2008)05-0170-06.
    [4]
    张瑞坤, 王兴国, 葛楠, 等. 侧向撞击作用下钢筋混凝土柱动力响应的有限元分析 [J]. 工程抗震与改造加固, 2009, 32(1): 21–25. DOI: 10.16226/j.issn.1002-8412.2010.01.009.

    ZHANG Ruikun, WANG Xingguo, GE Nan, et al. Finite element analysis of the dynamic response of column under lateral impact [J]. Earthquake Resistant Engineering and Retrofitting, 2009, 32(1): 21–25. DOI: 10.16226/j.issn.1002-8412.2010.01.009.
    [5]
    冯宇, 王兴国, 张玉敏, 等. 配筋率对混凝土柱侧向抗撞击性能影响的试验研究 [J]. 工业建筑, 2011, 41(11): 85–88. DOI: 10.13204/j.gyjz2011.11.016.

    FENG Yu, WANG Xingguo, ZHANG Yuming, et al. Experimental study on the effect of reinforcement ratio of the capabilities of RC column to resist impact loading [J]. Industrial Construction, 2011, 41(11): 85–88. DOI: 10.13204/j.gyjz2011.11.016.
    [6]
    HAN L H, HOU C C, ZHAO X L, et al. Behaviour of high-strength concrete filled steel tubes under transverse impact loading [J]. Journal of Constructional Steel Research, 2014, 92: 25–39. DOI: 10.1016/j.jcsr.2013.09.003.
    [7]
    朱翔, 陆新征, 杜永峰, 等. 外包钢管加固RC柱抗冲击试验研究 [J]. 工程力学, 2016, 33(6): 23–33. DOI: 10.6052/j.issn.1000-4750.2014.11.0991.

    ZHU Xiang, LUXingzheng, DU Yongfeng, et al. Experimental study on impact resistance of RC columns strengthened with external steel jackets [J]. Engineering Mechanics, 2016, 33(6): 23–33. DOI: 10.6052/j.issn.1000-4750.2014.11.0991.
    [8]
    周泽平, 王明洋, 冯淑芳, 等. 钢筋混凝土梁在低速冲击下的变形与破坏研究 [J]. 振动与冲击, 2007, 26(5): 99–103. DOI: 10.3969/j.issn.1000-3835.2007.05.028.

    ZHOU Zeping, WANG Mingyang, FENG Shufang, et al. Deformation and failure of reinforced beam under low velocity impact [J]. Journal of Vibration and Shock, 2007, 26(5): 99–103. DOI: 10.3969/j.issn.1000-3835.2007.05.028.
    [9]
    田力, 朱聪. 碰撞冲击荷载作用下钢筋混凝土柱的损伤评估及防护技术 [J]. 工程力学, 2013, 30(9): 144–150. DOI: 1000-4750(2013)09-0144-07 144-150.

    TIAN Li, ZHU Cong. Damage evaluation and protection technique of RC columns under impulsive load [J]. Engineering Mechanics, 2013, 30(9): 144–150. DOI: 1000-4750(2013)09-0144-07 144-150.
    [10]
    THILAKARATHNA H M I, THAMBIRATNAM D P, DHANASEKAR M, et al. Numerical simulation of axially concrete columns under transverse impact and vulnerability assessment [J]. International Journal of Impact Engineering, 2010, 37(11): 1100–1112. DOI: 10.1016/j.ijimpeng.2010.06.003.
    [11]
    FUJIKAKE K, SENGA T, UEDA N, et al. Sturdy on impact response of reactive powder concrete beam and its analytical model [J]. Journal of Advanced Concrete Technology, 2006, 4(1): 99–108. DOI: 10.3151/jact.4.99.
    [12]
    FUJIKAKE K, LI B, SOEUN S. Impact response of reinforced concrete beam and its analytical evaluation [J]. Journal of Structural Engineering, 2009, 135(8): 938–950. DOI: 10.1061/(ASCE)ST.1943-541X.0000039.
    [13]
    AL-THAIRY H, WANG Y C. A numerical study of the behaviour and failure modes of axially compressed steel columns subjected to transverse impact [J]. International Journal of Impact Engineering, 2011, 38(8/9): 732–744. DOI: 10.1016/j.ijimpeng.2011.03.005.
    [14]
    REMENNIKOV A M, KONG S Y, UY B. Response of foam-and concrete-filled square steel tubes under low-velocity impact loading [J]. Journal of Performance of Constructed Facilities, 2011, 25(5): 373–381. DOI: 10.1061/(ASCE)CF.1943-5509.0000175.
    [15]
    BAMBACH M R, JAMA H, ZHAO X L, et al. Hollow and concrete filled steel hollow sections under transverse impact loads [J]. Engineering Structures, 2008, 30(10): 2859–2870. DOI: 10.1016/j.engstruct.2008.04.003.
    [16]
    BAMBACH M R. Design of hollow and concrete filled steel and stainless steel tubular columns for transverse impact loads [J]. Thin-Walled Structures, 2011, 49(10): 1251–1260. DOI: 10.1016/j.tws.2011.05.009.
    [17]
    YOUSUF M, UY B, TAO Z, et al. Transverse impact resistance of hollow and concrete filled stainless steel columns [J]. Journal of Constructional Steel Research, 2013, 82(82): 177–189. DOI: 10.1016/j.jcsr.2013.01.005.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views (5152) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return