Volume 39 Issue 7
Jul.  2019
Turn off MathJax
Article Contents
WANG Ying, XIAO Wei, YAO Xiongliang, QIN Yezhi. Fragmentation of ice cover subjected to underwater explosion shock wave load and its influence factors[J]. Explosion And Shock Waves, 2019, 39(7): 073103. doi: 10.11883/bzycj-2018-0141
Citation: WANG Ying, XIAO Wei, YAO Xiongliang, QIN Yezhi. Fragmentation of ice cover subjected to underwater explosion shock wave load and its influence factors[J]. Explosion And Shock Waves, 2019, 39(7): 073103. doi: 10.11883/bzycj-2018-0141

Fragmentation of ice cover subjected to underwater explosion shock wave load and its influence factors

doi: 10.11883/bzycj-2018-0141
  • Received Date: 2018-04-26
  • Rev Recd Date: 2018-07-13
  • Available Online: 2019-07-25
  • Publish Date: 2019-07-01
  • Ice breaking by blasting is a complex process in underwater explosion engineering. In this study we examined the fragmentation characteristics of ice cover with underwater explosion shock wave and simulated the process of underwater explosion breaking ice process using LS-DYNA. We also compared the simulation result with the experimental data and found the min good agreement. Based on this we verified the simulation model and calculated different conditions. Then, keeping the test environment unchanged, we set different detonation distances, and calculated the radius of the ice breaking hole; varying the charge dosage, the detonation distance and the ice thickness, we designed nine group simulation conditions by the orthogonal design method, and analyzed the gray relational degrees and gray incidence coefficients between radius of breaking ice hole and different factors at different levels using the gray system theory. The analytical results showed that, at 100 g of the dosage, the ice thickness is 29 cm, the water depth is 2.9 m, the detonation distance range is 0.3−1.5 m, the radius range of breaking ice hole is 0−1.1 m, and the best detonation distance is between 0.3−0.45 m. According to the analysis of the above nine simulation conditions, the influencing factors that matter most remarkably in underwater ice breaking are the detonation distance (0.3, 0.6, 0.9 m), the dosage (100, 200, 300 g), and the ice thickness (24, 28, 32 cm), in order of their importance.
  • loading
  • [1]
    夏长富. 水下人工爆破冰凌技术研究与实践 [J]. 爆破, 2014, 31(2): 126–129. DOI: 10.3963/j.issn.1001-487X.2014.02.028.

    XIA Changfu. Research and practice of underwater ice jam breaking by manual-operated blasting [J]. Blasting, 2014, 31(2): 126–129. DOI: 10.3963/j.issn.1001-487X.2014.02.028.
    [2]
    张雨, 李岳阳, 王敏. 极地破冰船发展现状与趋势 [J]. 舰船科学与技术, 2017, 39(12): 188–193. DOI: 10.3404/j.issn1672-7649. 2017.12.040.

    ZHANG Yu, LI Yueyang, WANG Min. Overview and trend of the icebreakers [J]. Ship and Technology, 2017, 39(12): 188–193. DOI: 10.3404/j.issn1672-7649. 2017.12.040.
    [3]
    解文辉, 何秉顺, 李华新. 黄河防凌爆炸破冰效果 [J]. 工程爆破, 2014, 20(6): 29–31. DOI: 10.3969/j.issn.1006-7051.2014.06.007.

    XIE Wenhui, HE Bingshun, LI Huaxin. The effect of ice breaking by explosion for the yellow river ice flood prevention [J]. Engineering Blasting, 2014, 20(6): 29–31. DOI: 10.3969/j.issn.1006-7051.2014.06.007.
    [4]
    曲艳东, 刘万里, 翟诚. 水下爆炸冲击波传播规律数值分析 [J]. 爆破, 2017, 34(2): 100–104. DOI: 10.3963/j.issn.1001-487X.2017.02.019.

    QU Yandong, LIU Wanli, ZHAI Cheng. Numerical simulation of propagation law of shock waves in process of breaking ice by underwater blasting [J]. Blasting, 2017, 34(2): 100–104. DOI: 10.3963/j.issn.1001-487X.2017.02.019.
    [5]
    张忠和, 梁向前, 王树理. 水下爆破破冰机理的数值分析研究 [J]. 爆破, 2015, 32(6): 150–155. DOI: 10.3963/j.issn.1001-487X.2015.03.027.

    ZHANG Zhonghe, LIANG Xiangqian, WANG Shuli. Numerical simulation of ice breaking mechanism of underwater blasting [J]. Blasting, 2015, 32(6): 150–155. DOI: 10.3963/j.issn.1001-487X.2015.03.027.
    [6]
    吴瑞波, 郝明盛, 武彩岗, 等. 水中爆破破冰参数的优化实验 [J]. 工程爆破, 2014, 20(6): 25–28. DOI: 10.3969/j.issn.1006-7051.2014.06.006.

    WU Ruibo, HAO Mingsheng, WU Caigang, et al. The parameters optimization experiment of ice breaking by underwater blasting [J]. Engineering blasting, 2014, 20(6): 25–28. DOI: 10.3969/j.issn.1006-7051.2014.06.006.
    [7]
    钟冬望, 黄小武, 殷秀红, 等. 水下爆炸冲击波的数值模拟与实验研究 [J]. 爆破, 2015, 32(4): 14–18. DOI: 10.3963/j.issn.1001-487X.2015.04.004.

    ZHONG Dongwang, HUANG Xiaowu, YIN Xiuhong, et al. Numerical simulation and experimental study of underwater explosion shock wave [J]. Blasting, 2015, 32(4): 14–18. DOI: 10.3963/j.issn.1001-487X.2015.04.004.
    [8]
    姚熊亮, 汪玉, 张阿漫. 水下爆炸气泡动力学[M]. 哈尔滨: 哈尔滨工程大学出版社, 2012: 1−3.
    [9]
    宗智, 赵延杰, 邹丽. 水下爆炸结构毁伤的数值计算[M]. 北京:科学出版社, 2014: 3−7.
    [10]
    郭军伟. 冰体力学性质及其受到爆炸与冲击波作用研究[D]. 郑州: 华北水利水电大学, 2014: 34−37.
    [11]
    康德, 严平. 基于LS-DYNA的高速破片水中运动特性流固耦合数值模拟 [J]. 爆炸与冲击, 2014, 34(5): 534–538. DOI: 10.11883/1001-1455(2014)05-0534-05.

    KANG De, YAN Ping. Movement characteristics of high-velocity fragments in water medium: numerical simulation using LS-DYNA [J]. Explosion and Shock Waves, 2014, 34(5): 534–538. DOI: 10.11883/1001-1455(2014)05-0534-05.
    [12]
    顾强, 张世豪, 安晓红, 等. 基于灰色理论的两点爆炸起爆参数优化设计 [J]. 爆炸与冲击, 2015, 35(3): 359–365. DOI: 10.11883/1001-1455(2015)03-0359-07.

    GU Qiang, ZHANG Shihao, AN Xiaohong, et al. Optimization design for priming parameters of two-point explosion based on gray theory [J]. Explosion and Shock Waves, 2015, 35(3): 359–365. DOI: 10.11883/1001-1455(2015)03-0359-07.
    [13]
    林加剑, 任辉启, 沈兆武. 应用灰色系统理论研究爆炸成形弹丸速度的影响因素 [J]. 弹箭与制导学报, 2009, 29(3): 112–116. DOI: 10.3969/j.issn.1673-9728.2009.03.033.

    LIN Jiajian, REN Huiqi, SHEN Zhaowu. Study on primary influence factors for application of gray system theory to velocity of explosive forming projectile [J]. Journal of Projectiles Rockets Missiles and Guidance, 2009, 29(3): 112–116. DOI: 10.3969/j.issn.1673-9728.2009.03.033.
    [14]
    傅立. 灰色系统理论及其应用[M]. 北京: 科学技术文献出版社, 1992: 1−20.
    [15]
    吕锋. 灰色系统关联度之分辨率系数的研究 [J]. 系统工程理论与实践, 1997, 17(6): 49–54. DOI: 10.3321/j.issn:1000-6788.1997.06.011.

    LYU Feng. Research on the identification coefficient of relational grade for grey system [J]. Systems Engineering Theory and Practice, 1997, 17(6): 49–54. DOI: 10.3321/j.issn:1000-6788.1997.06.011.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(5)

    Article Metrics

    Article views (4817) PDF downloads(107) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return