Volume 39 Issue 6
Jun.  2019
Turn off MathJax
Article Contents
YE Qing, YU Yonggang. Numerical analysis of slow cook-off characteristics for solid rocket motor with natural convection[J]. Explosion And Shock Waves, 2019, 39(6): 062101. doi: 10.11883/bzycj-2018-0163
Citation: YE Qing, YU Yonggang. Numerical analysis of slow cook-off characteristics for solid rocket motor with natural convection[J]. Explosion And Shock Waves, 2019, 39(6): 062101. doi: 10.11883/bzycj-2018-0163

Numerical analysis of slow cook-off characteristics for solid rocket motor with natural convection

doi: 10.11883/bzycj-2018-0163
  • Received Date: 2018-05-14
  • Rev Recd Date: 2018-07-29
  • Available Online: 2019-05-25
  • Publish Date: 2019-06-01
  • A two-dimensional axisymmetric model about slow cook-off of solid rocket motor was established, where the process of slow cook-off for ammonium perchlorate/hydroxyl-terminated polybutadiene (AP/HTPB) propellant described by a two-step global chemical reaction kinetics, and natural convection of motor cavity was considered. The purpose of this paper is to study the thermal safety problems of solid rocket motor with ammonium perchlorate/hydroxyl-terminated polybutadiene (AP/HTPB) propellant. Numerical predictions of slow cook-off behavior for a motor were conducted at the heating rate s of 3.6, 7.2 and 10.8 K/h, respectively. The results show that the natural convection in the cavity of the solid rocket motor has a certain influence on the ignition temperature, ignition delay of the AP/HTPB propellant, and cannot be ignored in the accurate analysis of thermal safety. At the three heating rates, the initial ignition position of AP/HTPB propellants appeared in the annular region on the shoulder of the propellant. The ignition delay period, the ignition temperature and the temperature of the shell at the three heating rates were 30.71, 20.06, 18.68 h; 526.52, 528.10, 530.64 K; and 479.56, 496.82, 508.77 K; respectively. With the increase of heating rate, the response area of the cook-off is shifted to the junction between the propellant and the insulation, and the two-dimensional section of the ignition position is changed from ellipse to semi-ellipse.
  • loading
  • [1]
    冯晓军, 王晓峰. 装药孔隙率对炸药烤燃响应的影响 [J]. 爆炸与冲击, 2009, 29(1): 109–112. DOI: 10.11883/1001-1455(2009)01-0109-04.

    FENG Xiaojun, WANG Xiaofeng. Influences of charge porosity on cook-off response of explosive [J]. Explosion and Shock Waves, 2009, 29(1): 109–112. DOI: 10.11883/1001-1455(2009)01-0109-04.
    [2]
    王洪伟, 智小琦, 刘学柱, 等. 限定条件下聚黑炸药烤燃试验及热起爆临界温度的数值计算 [J]. 火炸药学报, 2016, 39(1): 70–74. DOI: 10.14077/j.issn.1007-7812.2016.01.013.

    WANG Hongwei, ZHI Xiaoqi, LIU Xuezhu, et al. Cook-off experiment calculation on thermal ignition critical temperature of JH explosive under defined condition [J]. Chinese Journal of Explosive and Propellant, 2016, 39(1): 70–74. DOI: 10.14077/j.issn.1007-7812.2016.01.013.
    [3]
    陈朗, 李贝贝, 马欣. DNAN炸药烤燃特征 [J]. 含能材料, 2016, 24(1): 27–32. DOI: 10.11943/j.issn.1006-9941.2016.01.004.

    CHEN Lang, LI Beibei, MA Xin. Research on the cook-off of DNAN explosive [J]. Journal of Energetic Materials, 2016, 24(1): 27–32. DOI: 10.11943/j.issn.1006-9941.2016.01.004.
    [4]
    赵孝彬, 李军, 程立国, 等. 固体推进剂慢速烤燃特性的影响因素研究 [J]. 含能材料, 2011, 19(6): 669–672. DOI: 10.3969/j.issn.1006-9941.2011.06.016.

    ZHAO Xiaobin, LI Jun, CHENG Liguo, et al. Influence factors of slow cook-off characteristic for solid propellant [J]. Chinese Journal of Energetic Materials, 2011, 19(6): 669–672. DOI: 10.3969/j.issn.1006-9941.2011.06.016.
    [5]
    陈朗, 马欣, 黄毅民, 等. 炸药多点测温烤燃实验和数值模拟 [J]. 兵工学报, 2011, 32(10): 1230–1236.

    CHEN Lang, MA Xin, HUANG Yimin, et al. Multi-point temperature measuring cook-off test and numerical simulation of explosive [J]. Acta Armamentarii, 2011, 32(10): 1230–1236.
    [6]
    高峰, 智小琦, 刘学柱, 等. 物理界面对炸药慢速烤燃特性的影响 [J]. 火炸药学报, 2014, 7(6): 53–57. DOI: 10.14077/j.issn.1007-7812.2014.06.012.

    GAO Feng, ZHI Xiaoqi, LIU Xuezhu, et al. Effect of physical interface on slow cook-off characteristics of explosives [J]. Chinese Journal of Explosives and Propellants, 2014, 7(6): 53–57. DOI: 10.14077/j.issn.1007-7812.2014.06.012.
    [7]
    牛余雷, 冯晓军, 郭昕, 等. GHL01炸药烤燃实验的尺寸效应与数值计算 [J]. 火炸药学报, 2014, 37(5): 37–41. DOI: 10.3969/j.issn.1007-7812.2014.05.008.

    NIU Yulei, FENG Xiaojun, GUO Xin, et al. Size effect and numerical simulation of cook-off test for GHL01 explosive [J]. Chinese Journal of Explosives and Propellants, 2014, 37(5): 37–41. DOI: 10.3969/j.issn.1007-7812.2014.05.008.
    [8]
    AYDEMIR E, ULAS A. A numerical study on the thermal initiation of a confined explosive in 2-D geometry [J]. Journal of Hazardous Materials, 2011, 186(1): 396. DOI: 10.1016/j.jhazmat.2010.11.015.
    [9]
    HO S Y. Thermo-mechanical properties of rocket propellants and correlation with cook-off behavior [J]. Propellants, Explosives, Pyrotechnics, 1995, 20(4): 206–214. DOI: 10.1002/(ISSN)1521-4087.
    [10]
    KOMAI I, SATO W. Reaction mechanisms in slow cook-off tests of GAP/AP propellants [C] // Insensitive Munitions and Energetic Materials Symposium (IMEMTS). Bristol: Fraunhofer Institute, 2006: 24−28.
    [11]
    陈中娥, 唐承志, 赵孝彬. 固体推进剂的慢速烤燃行为与热分解特性的关系研究 [J]. 含能材料, 2006, 14(2): 155–157. DOI: 10.3969/j.issn.1006-9941.2006.02.024.

    CHEN Zhonge, TANG Chengzhi, ZHAO Xiaobin. Characteristics of HTPB/AP propellants in slow cook-off [J]. Chinese Journal of Energetic Materials, 2006, 14(2): 155–157. DOI: 10.3969/j.issn.1006-9941.2006.02.024.
    [12]
    杨后文, 余永刚, 叶锐. AP/HTPB复合固体推进剂慢烤燃特性的数值模拟 [J]. 含能材料, 2015, 23(10): 924–929. DOI: 10.11943/j.issn.1006-9941.2015.10.002.

    YANG Houwen, YU Yonggang, YE Rui. Numerical simulation of cook-off characteristic for AP/HTPB composite solid propellant [J]. Chinese Journal of Energetic Materials, 2015, 23(10): 924–929. DOI: 10.11943/j.issn.1006-9941.2015.10.002.
    [13]
    YANG Houwen, YU Yonggang, YE Rui, et al. Cook-off test and numerical simulation of AP/HTPB composite solid propellant [J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 1–9. DOI: 10.1016/j.jlp.2015.11.028.
    [14]
    LI Wenfeng, YU Yonggang, YE Rui. Effect of charge size on cook-off characteristics of AP/HTPB base bleed propellant [J]. Acta Armamentarii, 2017, 38(8): 1532–1540. DOI: 10.3969/j.issn.1000-1093.2017.08.010.
    [15]
    SRIDHARAN P, HAROLD H, JASPERLAL C, et al. Study on the effect of propellant entrapment in the loose flap region on solid rocket motor performance [C] // AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2013. DOI: 10.2514/6.2013-4009.
    [16]
    KIM K H, KIM C K, YOO J C, et al. Test-based thermal decomposition simulation of AP/HTPB and AP/HTPE propellants [J]. Journal of Propulsion and Power, 2011, 27: 822–827. DOI: 10.2514/1.B34099.
    [17]
    GWAK M C, JUNG. T, YOH J J Friction-induced ignition modeling of energetic materials [J]. Journal of Mechanical Science and Technology, 2009, 23: 1779–1787. DOI: 10.1007/s12206-009-0603-1.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article Metrics

    Article views (5705) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return