Citation: | YE Qing, YU Yonggang. Numerical analysis of slow cook-off characteristics for solid rocket motor with natural convection[J]. Explosion And Shock Waves, 2019, 39(6): 062101. doi: 10.11883/bzycj-2018-0163 |
[1] |
冯晓军, 王晓峰. 装药孔隙率对炸药烤燃响应的影响 [J]. 爆炸与冲击, 2009, 29(1): 109–112. DOI: 10.11883/1001-1455(2009)01-0109-04.
FENG Xiaojun, WANG Xiaofeng. Influences of charge porosity on cook-off response of explosive [J]. Explosion and Shock Waves, 2009, 29(1): 109–112. DOI: 10.11883/1001-1455(2009)01-0109-04.
|
[2] |
王洪伟, 智小琦, 刘学柱, 等. 限定条件下聚黑炸药烤燃试验及热起爆临界温度的数值计算 [J]. 火炸药学报, 2016, 39(1): 70–74. DOI: 10.14077/j.issn.1007-7812.2016.01.013.
WANG Hongwei, ZHI Xiaoqi, LIU Xuezhu, et al. Cook-off experiment calculation on thermal ignition critical temperature of JH explosive under defined condition [J]. Chinese Journal of Explosive and Propellant, 2016, 39(1): 70–74. DOI: 10.14077/j.issn.1007-7812.2016.01.013.
|
[3] |
陈朗, 李贝贝, 马欣. DNAN炸药烤燃特征 [J]. 含能材料, 2016, 24(1): 27–32. DOI: 10.11943/j.issn.1006-9941.2016.01.004.
CHEN Lang, LI Beibei, MA Xin. Research on the cook-off of DNAN explosive [J]. Journal of Energetic Materials, 2016, 24(1): 27–32. DOI: 10.11943/j.issn.1006-9941.2016.01.004.
|
[4] |
赵孝彬, 李军, 程立国, 等. 固体推进剂慢速烤燃特性的影响因素研究 [J]. 含能材料, 2011, 19(6): 669–672. DOI: 10.3969/j.issn.1006-9941.2011.06.016.
ZHAO Xiaobin, LI Jun, CHENG Liguo, et al. Influence factors of slow cook-off characteristic for solid propellant [J]. Chinese Journal of Energetic Materials, 2011, 19(6): 669–672. DOI: 10.3969/j.issn.1006-9941.2011.06.016.
|
[5] |
陈朗, 马欣, 黄毅民, 等. 炸药多点测温烤燃实验和数值模拟 [J]. 兵工学报, 2011, 32(10): 1230–1236.
CHEN Lang, MA Xin, HUANG Yimin, et al. Multi-point temperature measuring cook-off test and numerical simulation of explosive [J]. Acta Armamentarii, 2011, 32(10): 1230–1236.
|
[6] |
高峰, 智小琦, 刘学柱, 等. 物理界面对炸药慢速烤燃特性的影响 [J]. 火炸药学报, 2014, 7(6): 53–57. DOI: 10.14077/j.issn.1007-7812.2014.06.012.
GAO Feng, ZHI Xiaoqi, LIU Xuezhu, et al. Effect of physical interface on slow cook-off characteristics of explosives [J]. Chinese Journal of Explosives and Propellants, 2014, 7(6): 53–57. DOI: 10.14077/j.issn.1007-7812.2014.06.012.
|
[7] |
牛余雷, 冯晓军, 郭昕, 等. GHL01炸药烤燃实验的尺寸效应与数值计算 [J]. 火炸药学报, 2014, 37(5): 37–41. DOI: 10.3969/j.issn.1007-7812.2014.05.008.
NIU Yulei, FENG Xiaojun, GUO Xin, et al. Size effect and numerical simulation of cook-off test for GHL01 explosive [J]. Chinese Journal of Explosives and Propellants, 2014, 37(5): 37–41. DOI: 10.3969/j.issn.1007-7812.2014.05.008.
|
[8] |
AYDEMIR E, ULAS A. A numerical study on the thermal initiation of a confined explosive in 2-D geometry [J]. Journal of Hazardous Materials, 2011, 186(1): 396. DOI: 10.1016/j.jhazmat.2010.11.015.
|
[9] |
HO S Y. Thermo-mechanical properties of rocket propellants and correlation with cook-off behavior [J]. Propellants, Explosives, Pyrotechnics, 1995, 20(4): 206–214. DOI: 10.1002/(ISSN)1521-4087.
|
[10] |
KOMAI I, SATO W. Reaction mechanisms in slow cook-off tests of GAP/AP propellants [C] // Insensitive Munitions and Energetic Materials Symposium (IMEMTS). Bristol: Fraunhofer Institute, 2006: 24−28.
|
[11] |
陈中娥, 唐承志, 赵孝彬. 固体推进剂的慢速烤燃行为与热分解特性的关系研究 [J]. 含能材料, 2006, 14(2): 155–157. DOI: 10.3969/j.issn.1006-9941.2006.02.024.
CHEN Zhonge, TANG Chengzhi, ZHAO Xiaobin. Characteristics of HTPB/AP propellants in slow cook-off [J]. Chinese Journal of Energetic Materials, 2006, 14(2): 155–157. DOI: 10.3969/j.issn.1006-9941.2006.02.024.
|
[12] |
杨后文, 余永刚, 叶锐. AP/HTPB复合固体推进剂慢烤燃特性的数值模拟 [J]. 含能材料, 2015, 23(10): 924–929. DOI: 10.11943/j.issn.1006-9941.2015.10.002.
YANG Houwen, YU Yonggang, YE Rui. Numerical simulation of cook-off characteristic for AP/HTPB composite solid propellant [J]. Chinese Journal of Energetic Materials, 2015, 23(10): 924–929. DOI: 10.11943/j.issn.1006-9941.2015.10.002.
|
[13] |
YANG Houwen, YU Yonggang, YE Rui, et al. Cook-off test and numerical simulation of AP/HTPB composite solid propellant [J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 1–9. DOI: 10.1016/j.jlp.2015.11.028.
|
[14] |
LI Wenfeng, YU Yonggang, YE Rui. Effect of charge size on cook-off characteristics of AP/HTPB base bleed propellant [J]. Acta Armamentarii, 2017, 38(8): 1532–1540. DOI: 10.3969/j.issn.1000-1093.2017.08.010.
|
[15] |
SRIDHARAN P, HAROLD H, JASPERLAL C, et al. Study on the effect of propellant entrapment in the loose flap region on solid rocket motor performance [C] // AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2013. DOI: 10.2514/6.2013-4009.
|
[16] |
KIM K H, KIM C K, YOO J C, et al. Test-based thermal decomposition simulation of AP/HTPB and AP/HTPE propellants [J]. Journal of Propulsion and Power, 2011, 27: 822–827. DOI: 10.2514/1.B34099.
|
[17] |
GWAK M C, JUNG. T, YOH J J Friction-induced ignition modeling of energetic materials [J]. Journal of Mechanical Science and Technology, 2009, 23: 1779–1787. DOI: 10.1007/s12206-009-0603-1.
|