Volume 39 Issue 6
Jun.  2019
Turn off MathJax
Article Contents
SU Xingya, JING Lin, ZHAO Longmao. Failure modes and shock resistance of sandwich panels with layered-gradient aluminum foam cores under air-blast loading[J]. Explosion And Shock Waves, 2019, 39(6): 063103. doi: 10.11883/bzycj-2018-0198
Citation: SU Xingya, JING Lin, ZHAO Longmao. Failure modes and shock resistance of sandwich panels with layered-gradient aluminum foam cores under air-blast loading[J]. Explosion And Shock Waves, 2019, 39(6): 063103. doi: 10.11883/bzycj-2018-0198

Failure modes and shock resistance of sandwich panels with layered-gradient aluminum foam cores under air-blast loading

doi: 10.11883/bzycj-2018-0198
  • Received Date: 2018-06-05
  • Rev Recd Date: 2019-02-22
  • Available Online: 2019-05-25
  • Publish Date: 2019-06-01
  • In this work we investigated the deformation/failure modes and shock resistance performance of sandwich panels with layered-gradient aluminum foam cores under air-blast loading by experiment using a ballistic pendulum device, the deflection-time history curves in the central point of the back face-sheet were measured using a laser displacement sensor, and examined the influences of the charge mass and core-layer arrangement on the failure modes and the shock resistance of the specimens. The results showed that the sandwich panel specimens failed due to the large inelastic deformation of the face-sheets, the core compression, the tensile fracture and the shear failure of the core. The shock resistance performance of the ungraded sandwich panels was found to be superior to all the graded core sandwich configurations. For the sandwich panels with layered-gradient cores, the improvement of the core-layer arrangement on the shock resistance of the specimens was not obvious under small blast impulse, while that of the graded specimens containing the top core-layer with the largest relative density demonstrated a remarkably greater shock resistance. These findings can serve as guidance in the optimal design of metallic foam core sandwich structures.
  • loading
  • [1]
    ZHU Feng, ZHAO Longmao, LU Guoxing, et al. Deformation and failure of blast-loaded metallic honeycomb sandwich panels-Experimental investigations [J]. International Journal of Impact Engineering, 2008, 35(9): 1063–1074. DOI: 10.1016/j.ijimpeng.2007.11.003.
    [2]
    JING Lin, SU Xingya, CHEN De, et al. Experimental and numerical study of sandwich beams with layered-gradient foam cores under low-velocity impact [J]. Thin-walled Structures, 2019, 135: 227–244. DOI: 10.1016/j.tws.2018.11.011.
    [3]
    敬霖, 王志华, 赵隆茂. 多孔金属及其夹芯结构力学性能的研究进展 [J]. 力学与实践, 2015, 37(1): 1–24. DOI: 10.6052/1000-0879-14-180.

    JING Lin, WANG Zhihua, ZHAO Longmao. Advances in studies of the mechanical performance of cellular metals and related sandwich structures [J]. Mechanics in Engineering, 2015, 37(1): 1–24. DOI: 10.6052/1000-0879-14-180.
    [4]
    YU Jilin, WANG Erheng, LI Jianrong, et al. Static and low-velocity impact behavior of sandwich beams with closed-cell aluminum-foam core in three-point bending [J]. International Journal of Impact Engineering, 2008, 35(8): 885–894. DOI: 10.1016/j.ijimpeng.2008.01.006.
    [5]
    CALISKAN U, APALAK M K. Low velocity bending impact behavior of foam core sandwich beams: experimental [J]. Composites Part B, 2017, 112: 158–175. DOI: 10.1016/j.compositesb.2016.12.038.
    [6]
    JING Lin, WANG Zhihua, ZHAO Longmao. The dynamic response of sandwich panels with cellular metal cores to localized impulsive loading [J]. Composites: Part B, 2016, 94: 52–63. DOI: 10.1016/j.compositesb.2016.03.035.
    [7]
    JING Lin, YANG Fei, ZHAO Longmao. Perforation resistance of sandwich panels with layered gradient metallic foam cores [J]. Composite Structures, 2017, 171: 217–226. DOI: 10.1016/j.compstruct.2017.02.097.
    [8]
    RUBINO V, DESHPANDE V S, FLECK N A. The dynamic response of end-clamped sandwich beams with a Y-frame or corrugated core [J]. International Journal of Impact Engineering, 2008, 35(8): 829–844. DOI: 10.1016/j.ijimpeng.2007.10.006.
    [9]
    GOEL M D, MATSAGAR V A, GUPTA A K. Blast resistance of stiffened sandwich panels with aluminum cenosphere syntactic foam [J]. International Journal of Impact Engineering, 2015, 77: 134–146. DOI: 10.1016/j.ijimpeng.2014.11.017.
    [10]
    JING Lin, WANG Zhihua, ZHAO Longmao. An approximate theoretical analysis for clamped cylindrical sandwich shells with metallic foam cores subjected to impulsive loading [J]. Composites: Part B, 2014, 60: 150–157.
    [11]
    RADFORD D D, MCSHANE G J, DESHPANDE V S, et al. The response of clamped sandwich plates with metallic foam cores to simulated blast loading [J]. International Journal of Solids and Structures, 2006, 43(7−8): 2243–2259. DOI: 10.1016/j.ijsolstr.2005.07.006.
    [12]
    JING Lin, WANG Zhihua, SHIM V P W, et al. An experimental study of the dynamic response cylindrical sandwich shells with metallic foam subjected to blast loading [J]. International Journal of Impact Engineering, 2014, 71: 60–72. DOI: 10.1016/j.ijimpeng.2014.03.009.
    [13]
    JING Lin, WANG Zhihua, ZHAO Longmao. Dynamic response of cylindrical sandwich shells with metallic foam cores under blast loading−numerical simulations [J]. Composite Structures, 2013, 99: 213–223. DOI: 10.1016/j.compstruct.2012.12.013.
    [14]
    KUMAR P, LEBLANC J, STARGEL D S, et al. Effect of plate curvature on blast response of aluminum panels [J]. International Journal of Impact Engineering, 2012, 46(6): 74–85. DOI: 10.1016/j.ijimpeng.2012.02.004.
    [15]
    KUMAR P, STARGEL D S, SHUKLA A. Effect of plate curvature on blast response of carbon composite panels [J]. Composite Structure, 2013, 99(4): 19–30. DOI: 10.1016/j.compstruct.2012.11.036.
    [16]
    夏志成, 王曦浩, 赵跃堂, 等. 钢板夹泡沫铝组合板抗爆性能研究 [J]. 振动与冲击, 2017, 36(2): 117–122. DOI: 10.13465/j.cnki.jvs.2017.02.019.

    XIA Zhicheng, WANG Xihao, ZHAO Yuetang, et al. Anti-blast performance of aluminum foam-core sandwich panels [J]. Journal of Vibration and Shock, 2017, 36(2): 117–122. DOI: 10.13465/j.cnki.jvs.2017.02.019.
    [17]
    CHEN De, JING Lin, YANG Fei. Optimal design of sandwich panels with layered-gradient aluminum foam cores under air-blast loading [J]. Composites: Part B, 2019, 166: 169–186. doi: 10.1016/j.compositesb.2018.11.125
    [18]
    敬霖, 王志华, 赵隆茂. 爆炸载荷作用下结构冲量的测量 [J]. 实验力学, 2009, 24: 151–156.

    JING Lin, WANG Zhihua, ZHAO Longmao. Measurement of the impulse of structures subjected to blast loading [J]. Journal of Experimental Mechanics, 2009, 24: 151–156.
    [19]
    敬霖, 王志华, 赵隆茂, 等. 撞击载荷下泡沫铝夹芯梁的塑性动力响应 [J]. 爆炸与冲击, 2010, 30(6): 561–568.

    JING Lin, WANG Zhihua, ZHAO Longmao, et al. Dynamic plastic response of foam sandwich beams subjected to impact loading [J]. Explosion and Shock Waves, 2010, 30(6): 561–568.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (6539) PDF downloads(119) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return