Citation: | WANG Zhikai, WANG Yinan, SUN Beisheng, YAO Xiongliang, YANG Nana. Influence of shape structure for floating shock platform on transverse shock spectrum[J]. Explosion And Shock Waves, 2019, 39(10): 103901. doi: 10.11883/bzycj-2018-0214 |
[1] |
Naval Sea Systems Command. Shock design criteria for surface ship: NAVSEA 0908-LP-000-3010 [R]. 1995.
|
[2] |
CHRIS G. Heavyweight high impact shock testing [R]. Arvonia, Virginia: HI-TEST LaboratoriesInc, 2007.
|
[3] |
宋敬利, 王永亮, 贾则. 冲击谱在舰载设备抗冲击设计中的应用 [J]. 水雷战与舰船防护, 2009(4): 19–22.
SONG Jingli, WANG Yongliang, JIA Ze. Applications of shock spectrum on shock resistance design of shipborne equipment [J]. Mine Warfare and Ship Self-Defence, 2009(4): 19–22.
|
[4] |
MIL-S-901D, Shock tests, HI(high impact) shipboard machinery equipment and systems, requirements for [S]. United States Department of Defense, 1989.
|
[5] |
王军, 姚熊亮, 杨棣. 浮动冲击平台冲击环境对设备响应的影响 [J]. 爆炸与冲击, 2015, 35(2): 236–242. DOI: 10.11883/1001-1455(2015)02-0236-07.
WANG Jun, YAOXiongliang, YANG Li. Impact analysis of shock environment for floating shock platform on equipment response [J]. Explosion and Shock Waves, 2015, 35(2): 236–242. DOI: 10.11883/1001-1455(2015)02-0236-07.
|
[6] |
FATHALLAH E, QI H, TONG L, et al. Numerical investigation of the dynamic response of optimized composite elliptical submersible pressure hull subjected to non-contact underwater explosion [J]. Composite Structures, 2015, 121: 121–133. DOI: 10.1016/j.compstruct.2014.11.016.
|
[7] |
张磊, 杜志鹏, 吴静波, 等. 200 t级浮动冲击平台水下爆炸试验低频冲击响应数据分析 [J]. 中国舰船研究, 2018(3): 60–65.
ZHANG Lei, DU Zhipeng, WU Jingbo, et al. Low-frequency shock response data analysis of underwater explosion test of 200-ton class floating shock platform [J]. Chinese Journal of Ship Research, 2018(3): 60–65.
|
[8] |
王军, 姚熊亮, 郭君. 中型浮动冲击平台结构设计研究 [J]. 振动与冲击, 2014, 33(7): 86–91. DOI: 10.13465/j.cnki.jvs.2014.07.015.
WANG Jun, YAOXiongliang, GUO Jun. Structural design for a intermediate floating shock platform [J]. Journal of Vibration and Shock, 2014, 33(7): 86–91. DOI: 10.13465/j.cnki.jvs.2014.07.015.
|
[9] |
李国华, 李玉节, 张效慈, 等. 浮动冲击平台水下爆炸冲击谱测量与分析 [J]. 船舶力学, 2000(2): 51–60.
LI Guohua, LI Yujie, ZHANG Xiaoci, et al. Measurement and analysis of underwater explosive impact spectra of floating shock platform [J]. Ship Mechanics, 2000(2): 51–60.
|
[10] |
王军. 浮动冲击平台冲击动力特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2015.
|
[11] |
姚熊亮, 张阿漫, 许维军. 声固耦合方法在舰船水下爆炸中的应用 [J]. 哈尔滨工程大学学报, 2005, 26(6): 707–712. DOI: 10.3969/j.issn.1006-7043.2005.06.003.
YAO Xiongliang, ZHANG Aman, XU Weijun. Application of acoustic solid coupling method in underwater explosion of ships [J]. Journal of Harbin Engineering University, 2005, 26(6): 707–712. DOI: 10.3969/j.issn.1006-7043.2005.06.003.
|
[12] |
LIU Y, YU F, LIU J. Modal analysis of vehicle compartment with acoustic-structure coupling [J]. Noise and Vibration Control, 2005.
|
[13] |
姚熊亮, 戴绍仕, 周其新, 等. 船体与设备一体化抗冲击分析 [J]. 爆炸与冲击, 2009, 29(4): 367–374. DOI: 10.11883/1001-1455(2009)04-0367-08.
YAO Xiongliang, DAI Shaoshi, ZHOU Qixin, et al. Numerical experiment methods for ship hull and equipment integrated analysis on shock resistance of shipboard equipments [J]. Explosion and Shock Waves, 2009, 29(4): 367–374. DOI: 10.11883/1001-1455(2009)04-0367-08.
|
[14] |
COLE P. Underwater explosion [M]. Beijing: Defense Industry Press, 1960.
|
[15] |
陆鑫森, 金咸定, 刘涌康. 船体振动学[M]. 北京: 国防工业出版社, 1980.
|
[16] |
穆朝民, 任辉启, 李永池, 等. 爆炸冲击波作用于墙体及对墙体绕射的实验研究 [J]. 实验力学, 2008, 23(2): 169–174.
MUChaomin, RENHuiqi, LIYongchi, et al. Experimental study on the effect of blast wave on wall and wall diffraction [J]. Experimental Mechanics, 2008, 23(2): 169–174.
|
[17] |
DICKINSONMH, LEHMANN F-O, SANE S P. Wing rotation and the aerodynamics basis of insect flight [J]. Science, 1999, 284(5422): 1954. DOI: 10.1126/science.284.5422.1954.
|
1. | 李占龙,任国祥,王瑶,秦园,张正. EPDM非线性力学行为及其拉伸速率特性研究. 应用力学学报. 2024(03): 666-672 . ![]() | |
2. | 陈凯杰,邱中辉,陈蔚芳,周晏锋. 丁腈橡胶大应变率范围本构模型建立. 热能动力工程. 2024(08): 183-192 . ![]() | |
3. | 周玄,王伯通,武一丁,陆文成,马铭辉,余毅磊,高光发. 霍普金森杆实验方法中材料弹性阶段杨氏模量及其曲线准确性分析. 爆炸与冲击. 2024(09): 130-143 . ![]() | |
4. | 李爽,蒲伟,张圩,刘亚雷,刘坤. 冲击压缩下PlatSil? Gel硅胶材料动态力学特性数值模拟. 兵工自动化. 2024(12): 42-47 . ![]() | |
5. | 袁良柱,陆建华,苗春贺,王鹏飞,徐松林. 基于分数阶模型的牡蛎壳动力学特性研究. 爆炸与冲击. 2023(01): 3-17 . ![]() | |
6. | 韩雨琦,曾庆龙,方勇,王奕智,朱则予,孙嘉阳. 常见高分子材料本构及力学性能研究现状. 广东建材. 2023(04): 45-50 . ![]() | |
7. | 李占龙,张正,宋勇,秦园,周俊贤. 硅橡胶高应变率本构模型研究. 太原科技大学学报. 2023(05): 389-395 . ![]() | |
8. | 尹耀得,赵德敏,刘建林,许增耀,侯伟. 丙烯酸弹性体的率相关分数阶黏弹性模型研究. 力学学报. 2022(01): 154-162 . ![]() | |
9. | 黄垂艺,时岩,金朋刚,陈凯. PBX炸药损伤本构模型及其工程运用. 含能材料. 2022(03): 188-196 . ![]() | |
10. | 徐勇,李昊,郭训忠,张士宏,夏亮亮,胡胜寒. 基于磁流变弹性体的新型管材成形技术研究进展. 航空制造技术. 2022(10): 14-22 . ![]() | |
11. | 彭道军,徐树全,焦亚东,韩雨琦,方勇. PVC材料基本力学性能和结构应用现状. 建材世界. 2022(06): 1-5 . ![]() | |
12. | 雷经发,宣言,刘涛,姜锡权,段飞亚,魏展. 聚氯乙烯弹性体动态拉伸力学性能实验研究. 高压物理学报. 2021(03): 80-89 . ![]() |