Volume 39 Issue 9
Sep.  2019
Turn off MathJax
Article Contents
WANG Yalei, ZHENG Ligang, YU Shuijun, ZHU Xiaochao, LI Gang, DU Depeng, DOU Zengguo. Effect of vented end faces on characteristics of methane explosion in duct[J]. Explosion And Shock Waves, 2019, 39(9): 095401. doi: 10.11883/bzycj-2018-0249
Citation: WANG Yalei, ZHENG Ligang, YU Shuijun, ZHU Xiaochao, LI Gang, DU Depeng, DOU Zengguo. Effect of vented end faces on characteristics of methane explosion in duct[J]. Explosion And Shock Waves, 2019, 39(9): 095401. doi: 10.11883/bzycj-2018-0249

Effect of vented end faces on characteristics of methane explosion in duct

doi: 10.11883/bzycj-2018-0249
  • Received Date: 2018-07-10
  • Rev Recd Date: 2018-09-12
  • Publish Date: 2019-09-01
  • In order to study the characteristics of methane explosion under different vented end faces, explosion tests of methane with different concentrations are carried out in a vertical 5 L quartz duct with the upper end sealed by different films. The results show that the properties of the vented end faces have significant effects on methane explosion. The explosion overpressure of methane with different concentrations is largely dependent upon the vent burst pressure of the vented end faces, which increases with the increasing vent burst pressure. Specially, by covering the end of the duct by a single layer of PVC film, neither the flame nor the overpressure oscillation will be aroused by the rupture of the PVC film, while the rupture of the paper which generates drastic discharge and reflux of the air flow will severely reverse and distort the flame, such that cause the overpressure oscillation in the duct. Moreover, as the two works together, the PVC film will hinder the venting of the air flow, resulting in accelerating the reduction of the overpressure and suppressing the flame and overpressure oscillation. However, this effect gradually decreases with the increasing layers of paper films. Indeed, as the vent burst pressure reaches a certain value, the difference among the explosion overpressure of different concentrations of methane gradually diminishes owing to the same vent burst pressure, which is the maximum pressure of the overpressure history, resulting in a similar overpressure amongst different concentrations of methane. Significantly, the overpressure attenuation curves of methane explosion with different concentrations completely coincide with each other in the first half of the period. At this point, the differential overpressure between the internal and external duct is the key factor leading to the overpressure oscillation, while the influence of the combustion rate of methane with different concentrations on the overpressure oscillation can be ignored.
  • loading
  • [1]
    CAO X Y, REN J J, ZHOU Y H, et al. Suppression of methane/air explosion by ultrafine water mist containing sodium chloride additive [J]. Journal of Hazardous Materials, 2015, 285: 311–318. DOI: 10.1016/j.jhazmat.2014.11.016.
    [2]
    JIN K Q, DUAN Q L, LIEW K M, et al. Experimental study on a comparison of typical premixed combustible gas-air flame propagation in a horizontal rectangular closed duct [J]. Journal of Hazardous Materials, 2017, 327: 116–126. DOI: 10.1016/j.jhazmat.2016.12.050.
    [3]
    陈东梁, 孙金华, 刘义, 等. 甲烷/空气预混气体火焰的传播特征 [J]. 爆炸与冲击, 2008, 28(5): 385–390.

    CHEN Dongliang, SUN Jinhua, LIU Yi, et al. Propagation characteristics of premixed methane-air flames [J]. Explosion and Shock Waves, 2008, 28(5): 385–390.
    [4]
    李阳超, 杜扬, 齐圣, 等. 汽油蒸气/空气预混火焰的无拉伸层流燃烧速率 [J]. 爆炸与冲击, 2017, 37(5): 863–870. DOI: 10.11883/1001-1455(2017)05-0863-08.

    LI Yangchao, DU Yang, QI Sheng, et al. Gasoline vapor/air premixed flame’s unstretched laminar burning velocity [J]. Explosion and Shock Waves, 2017, 37(5): 863–870. DOI: 10.11883/1001-1455(2017)05-0863-08.
    [5]
    杨艺, 何学秋, 刘建章, 等. 瓦斯爆燃火焰内部流场分形特性研究 [J]. 爆炸与冲击, 2004, 24(1): 30–36.

    YANG Yi, HE Xueqiu, LIU Jianzhang, et al. Fractal characteristics of flame inner flow field in methane/air explosion [J]. Explosion and Shock Waves, 2004, 24(1): 30–36.
    [6]
    ZHU C J, LIN B Q, JIANG B Y. Flame acceleration of premixed methane/air explosion in parallel pipes [J]. Journal of Loss Prevention in the Process Industries, 2012, 25(2): 383–390. DOI: 10.1016/j.jlp.2011.10.004.
    [7]
    陆胤臣, 陶刚, 张礼敬. 球形容器内甲烷-空气爆炸特性分析与理论计算 [J]. 爆炸与冲击, 2017, 37(4): 773–778. DOI: 10.11883/1001-1455(2017)04-0773-06.

    LU Yinchen, TAO Gang, ZHANG Lijing. Analysis and theoretical calculation of explosion characteristics of methane-air mixture in a spherical vessel [J]. Explosion and Shock Waves, 2017, 37(4): 773–778. DOI: 10.11883/1001-1455(2017)04-0773-06.
    [8]
    ZHANG K, WANG Z R, YAN C, et al. Effect of size on methane-air mixture explosions and explosion suppression in spherical vessels connected with pipes [J]. Journal of Loss Prevention in the Process Industries, 2017, 49: 785–790. DOI: 10.1016/j.jlp.2017.02.013.
    [9]
    孙松, 高康华. 管道内气体爆炸时火焰传播湍流因子的研究 [J]. 煤炭学报, 2016, 41(S2): 441–447.

    SUN Song, GAO Kanghua. Study on turbulence factors of flame propagation in tube under gas explosion [J]. Journal of China Coal Society, 2016, 41(S2): 441–447.
    [10]
    何学超, 孙金华, 陈先锋, 等. 管道内甲烷-空气预混火焰传播特性的实验与数值模拟研究 [J]. 中国科学技术大学学报, 2009, 39(4): 419–423.

    HE Xuechao, SUN Jinhua, CHEN Xianfeng, et al. Experimental and numerical study on flame propagation and structure behaviors of methane-air premixed combustion in tube [J]. Journal of University of Science and Technology of China, 2009, 39(4): 419–423.
    [11]
    SUN S, WANG M Y, GAO K H, et al. Effect of vent conditions on internal overpressure time-history during a vented explosion [J]. Journal of Loss Prevention in the Process Industries, 2018, 54: 85–92. DOI: 10.1016/j.jlp.2018.03.002.
    [12]
    CHAO J, BAUWENS C R, DOROFEEV S B. An analysis of peak overpressures in vented gaseous explosions [J]. Proceedings of the Combustion Institute, 2011, 33(2): 2367–2374. DOI: 10.1016/j.proci.2010.06.144.
    [13]
    CAO Y, GUO J, HU K L, et al. Effect of ignition location on external explosion in hydrogen-air explosion venting [J]. International Journal of Hydrogen Energy, 2017, 42(15): 10547–10554. DOI: 10.1016/j.ijhydene.2017.01.095.
    [14]
    SEZER H, KRONZ F, AKKERMAN V Y, et al. Methane-induced explosions in vented enclosures [J]. Journal of Loss Prevention in the Process Industries, 2017, 48: 199–206. DOI: 10.1016/j.jlp.2017.04.009.
    [15]
    KUZNETSOV M, FRIEDRICH A, STERN G, et al. Medium-scale experiments on vented hydrogen deflagration [J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 416–428. DOI: 10.1016/j.jlp.2015.04.013.
    [16]
    BAUWENS C R, CHAO J, DOROFEEV S B. Effect of hydrogen concentration on vented explosion overpressures from lean hydrogen-air deflagrations [J]. International Journal of Hydrogen Energy, 2012, 37(22): 17599–17605. DOI: 10.1016/j.ijhydene.2012.04.053.
    [17]
    QI B, QIN F, ZHANG Y D, et al. Effects of gas concentration and venting pressure on overpressure transients during vented explosion of methane-air mixtures [J]. Fuel, 2016, 175: 40–48. DOI: 10.1016/j.fuel.2016.01.084.
    [18]
    郑立刚, 苏洋, 李刚, 等. 点火位置对氢气/甲烷/空气预混气体爆燃特性的影响 [J]. 化工学报, 2017, 68(12): 4874–4881. DOI: 10.11949/j.issn.0438-1157.20170369.

    ZHENG Ligang, SU Yang, LI Gang, et al. Effect of ignition position on deflagration characteristics of premixed hydrogen/methane/air [J]. Journal of Chemical Industry and Engineering, 2017, 68(12): 4874–4881. DOI: 10.11949/j.issn.0438-1157.20170369.
    [19]
    余明高, 阳旭峰, 郑凯, 等. 障碍物对甲烷/氢气爆炸特性的影响 [J]. 爆炸与冲击, 2018, 38(1): 19–27. DOI: 10.11883/bzycj-2017-0172.

    YU Minggao, YANG Xufeng, ZHENG Kai, et al. Effect of obstacles on explosion characteristics of methane/hydrogen [J]. Explosion and Shock Waves, 2018, 38(1): 19–27. DOI: 10.11883/bzycj-2017-0172.
    [20]
    余明高, 杨勇, 裴蓓, 牛攀, 朱新娜. N2双流体细水雾抑制管道瓦斯爆炸实验研究 [J]. 爆炸与冲击, 2017, 37(2): 194–200. DOI: 10.11883/1001-1455(2017)02-0194-07.

    YU Minggao, YANG Yong, PEI Bei, et al. Experimental study of methane explosion suppression by nitrogen twin-fluid water mist [J]. Explosion and Shock Waves, 2017, 37(2): 194–200. DOI: 10.11883/1001-1455(2017)02-0194-07.
    [21]
    王世茂, 杜扬, 李阳超, 等. 含弱约束结构受限空间油气爆炸外部火焰特性 [J]. 后勤工程学院学报, 2016, 32(5): 39–43. DOI: 10.3969/j.issn.1672-7843.2016.05.007.

    WANG Shimao, DU Yang, LI Yangchao, et al. External flame characteristics of gasoline-air mixture explosion in confined space with weakly constrained structure [J]. Journal of Logistical Engineering University, 2016, 32(5): 39–43. DOI: 10.3969/j.issn.1672-7843.2016.05.007.
    [22]
    杜扬, 王世茂, 袁广强, 等. 含弱约束端面短管道油气爆炸特性实验研究 [J]. 爆炸与冲击, 2018, 38(2): 465–472. DOI: 10.11883/bzycj-2015-0242.

    DU Yang, WANG Shimao, YUAN Guangqiang, et al. Experimental study of fuel-air mixture explosion characteristics in the short pipe containing weakly confined face at the end [J]. Explosion and Shock Waves, 2018, 38(2): 465–472. DOI: 10.11883/bzycj-2015-0242.
    [23]
    FAKANDU B K, ANDREWS G E, PHYLAKTOU H N. Vent burst pressure effects on vented gas explosion reduced pressure [J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 429–438. DOI: 10.1016/j.jlp.2015.02.005.
    [24]
    GUO J, LI Q, CHEN D, et al. Effect of burst pressure on vented hydrogen-air explosion in a cylindrical vessel [J]. International Journal of Hydrogen Energy, 2015, 40(19): 6478–6486. DOI: 10.1016/j.ijhydene.2015.03.059.
    [25]
    GUO J, WANG C J, LI Q, et al. Effect of the vent burst pressure on explosion venting of rich methane-air mixtures in a cylindrical vessel [J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 82–88. DOI: 10.1016/j.jlp.2015.12.006.
    [26]
    郑立刚, 吕先舒, 郑凯, 等. 点火源位置对甲烷-空气爆燃超压特征的影响 [J]. 化工学报, 2015, 66(7): 2749–2756. DOI: 10.11949/j.issn.0438-1157.20141789.

    ZHENG Ligang, LV Xianshu, ZHENG Kai, et al. Influence of ignition position on overpressure of premixed methane-air deflagration [J]. Journal of Chemical Industry and Engineering, 2015, 66(7): 2749–2756. DOI: 10.11949/j.issn.0438-1157.20141789.
    [27]
    HISKEN H, ENSTAD G A, MIDDHA P, et al. Investigation of concentration effects on the flame acceleration in vented channels [J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 447–459. DOI: 10.1016/j.jlp.2015.04.005.
    [28]
    IBRAHIM S S, MASRI A R. The effects of obstructions on overpressure resulting from premixed flame deflagration [J]. Journal of Loss Prevention in the Process Industries, 2001, 14(3): 213–221. DOI: 10.1016/S0950-4230(00)00024-3.
    [29]
    LV X S, ZHENG L G, ZHANG Y G, et al. Combined effects of obstacle position and equivalence ratio on overpressure of premixed [J]. International Journal of Hydrogen Energy, 2016, 41: 17740–17749. DOI: 10.1016/j.ijhydene.2016.07.263.
    [30]
    温小萍, 武建军, 解茂昭. 瓦斯爆炸火焰结构与压力波的耦合规律 [J]. 化工学报, 2013, 64(10): 3871–3877. DOI: 10.3969/j.issn.2013.10.052.

    WEN Xiaoping, WU Jianjun, XIE Maozhao. Coupled relationship between flame structure and pressure wave of gas explosion [J]. Journal of Chemical Industry and Engineering, 2013, 64(10): 3871–3877. DOI: 10.3969/j.issn.2013.10.052.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (5521) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return