Volume 39 Issue 9
Sep.  2019
Turn off MathJax
Article Contents
YU Zhongshen, FANG Xiang, LI Yuchun, REN Junkai, ZHANG Jun, SONG Jiaxing. Effects of TiH2 content on dynamic mechanical properties and impact sensitivity of Al/PTFE[J]. Explosion And Shock Waves, 2019, 39(9): 092301. doi: 10.11883/bzycj-2018-0256
Citation: YU Zhongshen, FANG Xiang, LI Yuchun, REN Junkai, ZHANG Jun, SONG Jiaxing. Effects of TiH2 content on dynamic mechanical properties and impact sensitivity of Al/PTFE[J]. Explosion And Shock Waves, 2019, 39(9): 092301. doi: 10.11883/bzycj-2018-0256

Effects of TiH2 content on dynamic mechanical properties and impact sensitivity of Al/PTFE

doi: 10.11883/bzycj-2018-0256
  • Received Date: 2018-07-14
  • Rev Recd Date: 2018-10-16
  • Available Online: 2019-08-25
  • Publish Date: 2019-09-01
  • Four kinds of aluminum/ titanium hydride/ polytetrafluoroethylene (Al/TiH2/PTFE) samples with different TiH2 contents were prepared by the mixed/compression/sintering method. The dynamic compression mechanical properties, impact sensitivity and reaction characteristics of the reaction materials were studied based on the split Hopkinson pressure bar (SHPB) and drop-weight impact tests. The results indicate that the four materials all show strain hardening and strain rate hardening effects, and the yield strength and hardening modulus increase with the increasing of the strain rate. Under the same loading strain rate, the yield strength of the material increases with the increasing of TiH2 content, and the compressive strength of the material increases first and then decreases. When the mass fraction of TiH2 is 5%, the compressive strength of the material reaches the maximum value of 166.4 MPa, which is 6.8% higher than that of the Al/PTFE. Within a certain range of mass fraction (less than 5%), adding TiH2 helps to improve the impact sensitivity and energy release level of the Al/PTFE material, while the impact sensitivity and the reaction degree gradually decrease when the mass fraction of TiH2 exceeds 10%. Compared with the Al/PTFE, there are sparks spraying from the reaction region of the TiH2-contained specimens, and this phenomenon is more significant with the increasing of TiH2 content.
  • loading
  • [1]
    WANG Huaixi, LI Yuchun, FENG Bin, et al. Compressive properties of PTFE/Al/Ni composite under uniaxial loading [J]. Journal of Materials Engineering and Performance, 2017, 26(5): 2331–2336. DOI: 10.1007/s11665-017-2666-y.
    [2]
    XU Fengyue, LIU Shubo, ZHENG Yuanfeng, et al. Quasi-static compression properties and failure of PTFE/Al/W reactive materials [J]. Advanced Engineering Materials, 2017, 19(1): 1600350. DOI: 10.1002/adem.201600350.
    [3]
    FENG Bin, FANG Xiang, LI Yuchun, et al. An initiation phenomenon of Al-PTFE under quasi-static compression [J]. Chemical Physics Letters, 2015, 637: 38–41. DOI: 10.1016/j.cplett.2015.07.056.
    [4]
    徐松林. PTFE/A1含能反应材料力学性能研究[D]. 长沙: 国防科学技术大学, 2010.
    [5]
    葛超, 乌布力艾散·麦麦提图尔荪, 田超, 等. 基于气炮实验的PTFE/Al 复合材料冲击反应阈值 [J]. 爆炸与冲击, 2018, 38(1): 1–8. DOI: 10.11883/bzycj-2017-0030.

    GE Chao, MAIMAITITUERSUN Wubuliaisan, TIAN Chao, et al. Impact-induced initiation thresholds of polytetrafluoroethylene/Al composite by gas gun [J]. Explosion and Shock Waves, 2018, 38(1): 1–8. DOI: 10.11883/bzycj-2017-0030.
    [6]
    ZHANG X F, ZHANG J, QIAO L, et al. Experimental study of the compression properties of Al/W/PTFE granular composites under elevated strain rates [J]. Material Science and Engineering: A, 2013, 581(10): 48–55. DOI: 10.1016/j.msea.2013.05.063.
    [7]
    WANG Liu, LIU Jinxu, LI Shukui, et al. Investigation on reaction energy, mechanical behavior and impact insensitivity of W/PTFE/Al composites with different W percentage [J]. Materials and Design, 2016, 92(5): 397–404. DOI: 10.1016/j.matdes.2015.12.045.
    [8]
    徐松林, 阳世清, 张炜, 等. PTFE/Al含能复合物的本构关系 [J]. 爆炸与冲击, 2010, 30(4): 439–444. DOI: 10.11883/1001-1455(2010)04-0439-06.

    XU Songlin, YANG Shiqing, ZHANG Wei, et al. A constitutive relation for a pressed PTFE/Al energetic composite material [J]. Explosion and Shock Waves, 2010, 30(4): 439–444. DOI: 10.11883/1001-1455(2010)04-0439-06.
    [9]
    任会兰, 李蔚, 刘晓俊, 等. 钨颗粒增强铝/聚四氟乙烯材料的冲击反应特性 [J]. 兵工学报, 2016, 37(5): 872–878. DOI: 10.3969/j.issn.1000-1093.2016.05.014.

    REN Huilan, LI Wei, LIU Xiaojun, et al. Reaction behaviors of Al/PTFE materials enhanced by W particles [J]. Acta Armamentarii, 2016, 37(5): 872–878. DOI: 10.3969/j.issn.1000-1093.2016.05.014.
    [10]
    周杰, 何勇, 何源, 等. Al/PTFE/W反应材料的准静态压缩性能与冲击释能特性 [J]. 含能材料, 2017, 25(11): 903–912. DOI: 10.11943/j.issn.1006-9941.2017.11.004.

    ZHOU Jie, HE Yong, HE Yuan, et al. Quasi-static compression and impact energy release characteristics of reactive materials [J]. Chinese Journal of Energetic Materials, 2017, 25(11): 903–912. DOI: 10.11943/j.issn.1006-9941.2017.11.004.
    [11]
    乌布力艾散·麦麦提图尔荪, 葛超, 董永香, 等. SHPB 加载下 PTFE/Al冲击反应的临界条件 [J]. 爆炸与冲击, 2018, 38(5): 957–965. DOI: 10.11883/bzycj-2017-0075.

    MAIMAITITUERSUN Wubuliaisan, GE Chao, DONG Yongxiang, et al. Research on the impact-induced initiation criteria of PTFE/Al by split Hopkinson pressure bar [J]. Explosion and Shock Waves, 2018, 38(5): 957–965. DOI: 10.11883/bzycj-2017-0075.
    [12]
    FENG B, LI Y C, WU S Z, et al. A crack-induced initiation mechanism of Al-PTFE under quasi-static compression and the investigation of influencing factors [J]. Materials and Design, 2016, 108: 411–417. DOI: 10.1016/j.matdes.2016.06.125.
    [13]
    ZHANG Xinbo, LIU Jinxu, WANG Liu, et al. Effects of Al and W particle size on combustion characteristics and dynamic response of W-PTFE-Al composites [J]. Rare Metal Materials and Engineering, 2018, 47(6): 1723–1728. DOI: 10.1016/S1875-5372(18)30156-5.
    [14]
    GE C, DONG Y X, MAIMAITITUERSUN W. Microscale simulation on mechanical properties of Al/PTFE composite based on real microstructures [J]. Materials, 2016, 9(7): 590–605. DOI: 10.3390/ma9070590.
    [15]
    HUNT E M, MALCOLM S, PANTOYA M L, et al. Impact ignition of nano and micron composite energetic materials [J]. International Journal of Impact Engineering, 2009, 36(6): 842–846. DOI: 10.1016/j.ijimpeng.2008.11.011.
    [16]
    李辰芳. 用氢化钛提高固体推进剂燃速的研究 [J]. 飞航导弹, 1997, 9(6): 34–37. DOI: 10.16338/j.issn.1009-1319.1997.06.009.
    [17]
    薛冰, 马宏昊, 陈伟, 等. RDX基钛氢复合炸药空中爆炸性能 [J]. 含能材料, 2015, 23(11): 1046–1050. DOI: 10.11943/j.issn.1006-9941.2015.11.002.

    XUE Bing, MA Honghao, CHEN Wei, et al. Air explosion property of RDX-based titanium hydride composite explosive [J]. Chinese Journal of Energetic Materials, 2015, 23(11): 1046–1050. DOI: 10.11943/j.issn.1006-9941.2015.11.002.
    [18]
    COLLINS L W. The stability and compatibility of TiHx/KClO4 pyrotechnics [J]. Journal Hazardous Materials, 1982, 5(4): 325–333. DOI: 10.1016/0304-3894(82)85021-8.
    [19]
    COLLINS L W. Thermal ignition of titanium based pyrotechnics [J]. Combustion and Flame, 1981, 41(3): 325–330. DOI: 10.1016/0010-2180(81)90066-3.
    [20]
    于钟深, 方向, 高振儒, 等. TiH2含量对Al/PTFE准静态压缩力学性能和反应特性的影响 [J]. 含能材料, 2018, 26(8): 720–724. DOI: 10.11943/CJEM2017387.

    YU Zhongshen, FANG Xiang, GAO Zhenru, et al. Effect of TiH2 content on mechanical properties and reaction characteristics of Al/PTFE under quasi-static compression [J]. Chinese Journal of Energetic Materials, 2018, 26(8): 720–724. DOI: 10.11943/CJEM2017387.
    [21]
    王爱玉, 阮庆云, 陈海云, 等. 炸药实验方法: GJB772A-97 [S]. 北京: 国防科学技术工业委员会, 1997.
    [22]
    YU Zhongshen, FIANG Xiang, GAO Zhenru, et al. Mechanical and reaction properties of Al/TiH2/PTFE under quasi-static compression [J]. Advanced Engineering Materials, 2018, 20: 1800019. DOI: 10.1002/adem.201800019.
    [23]
    AMES R. Energy release characteristics of impact-initiated energetic materials [C] // MRS Proceedings, 2005, 896(3): 321−333. DOI: 10.1557/PROC-0896-H03-08.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (5676) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return