Volume 39 Issue 11
Nov.  2019
Turn off MathJax
Article Contents
YAO Chengbao, WANG Hongliang, PU Xifeng, SHOU Liefeng, WANG Zhihuan. Numerical simulation of intense blast wave reflected on rigid ground[J]. Explosion And Shock Waves, 2019, 39(11): 112201. doi: 10.11883/bzycj-2018-0287
Citation: YAO Chengbao, WANG Hongliang, PU Xifeng, SHOU Liefeng, WANG Zhihuan. Numerical simulation of intense blast wave reflected on rigid ground[J]. Explosion And Shock Waves, 2019, 39(11): 112201. doi: 10.11883/bzycj-2018-0287

Numerical simulation of intense blast wave reflected on rigid ground

doi: 10.11883/bzycj-2018-0287
  • Received Date: 2018-08-08
  • Rev Recd Date: 2018-11-01
  • Publish Date: 2019-11-01
  • In order to predict the intense blast wave in air, a multi-material numerical scheme is proposed in two-dimensional cylindrical coordinates on Eulerian grids, which can handle the blast wave problems with high ratio in initial density and pressure. Combined with the adaptive mesh technique, the propagation of blast wave produced by a 1 kt TNT intense explosion is simulated, and the effects of real gas equation of state and the nonuniform atmosphere are taken into account. The calculated blast wave parameters on the ground, such as peak overpressures and impulses, agree well with the experimental data in a wide space range, and the influences of heights of burst are analyzed.
  • loading
  • [1]
    乔登江. 核爆炸物理概论[M]. 北京: 国防工业出版社, 2003: 51−55.
    [2]
    GLASSTONE S, DOLAN P J. The effects of nuclear weapons [R]. USA: Defense Technical Information Center, 1977: 453−501. DOI: 10.21236/ada087568.
    [3]
    段晓瑜, 崔庆忠, 郭学永, 等. 炸药在空气中爆炸冲击波的地面反射超压实验研究 [J]. 兵工学报, 2016, 37(12): 2277–2283. DOI: 10.3969/j.issn.1000-1093.2016.12.013.

    DUAN Xiaoyu, CUI Qingzhong, GUO Xueyong, et al. Experimental investigation of ground reflected overpressure of shock wave in air blast [J]. Acta Armamentarii, 2016, 37(12): 2277–2283. DOI: 10.3969/j.issn.1000-1093.2016.12.013.
    [4]
    HIRT C W, AMSDEN A A, COOK J L. An arbitrary Lagrangian-Eulerian computing method for all flow speeds [J]. Journal of Computational Physics, 1974, 14(3): 227–253. DOI: 10.1016/0021-9991(74)90051-5.
    [5]
    OSHER S, SETHIAN J A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations [J]. Journal of Computational Physics, 1988, 79(1): 12–49. DOI: 10.1016/0021-9991(88)90002-2.
    [6]
    TRYGGVASON G, BUNNER B, ESMAEELI A, et al. A front-tracking method for the computations of multiphase flow [J]. Journal of Computational Physics, 2001, 169(2): 708–759. DOI: 10.1006/jcph.2001.6726.
    [7]
    FEDKIW R P, ASLAM T, MERRIMAN B, et al. A non-oscillatory Eulerian approach to interfaces in multimaterial flows: the ghost fluid method [J]. Journal of Computational Physics, 1999, 152(2): 457–492. DOI: 10.1006/jcph.1999.6236.
    [8]
    LIU T G, KHOO B C, WANG C W. The ghost fluid method for compressible gas-water simulation [J]. Journal of Computational Physics, 2005, 204(1): 193–221. DOI: 10.1016/j.jcp.2004.10.012.
    [9]
    SCHOCH S, NORDIN-BATES K, NIKIFORAKIS N. An Eulerian algorithm for coupled simulations of elastoplastic-solids and condensed-phase explosives [J]. Journal of Computational Physics, 2013, 252: 163–194. DOI: 10.1016/j.jcp.2013.06.020.
    [10]
    CROWL W K. Structures to resist the effects of accidental explosions [M]. USA: US Army, Navy and Air Force, US Government Printing Office, 1969: 205−315.
    [11]
    徐维铮, 吴卫国. 爆炸波高精度数值计算程序开发及应用 [J]. 中国舰船研究, 2017, 12(3): 64–74. DOI: 10.3969/j.issn.1673-3185.2017.03.010.

    XU Weizheng, WU Weiguo. Development of in-house high-resolution hydrocode for assessment of blast waves and its application [J]. Chinese Journal of Ship Research, 2017, 12(3): 64–74. DOI: 10.3969/j.issn.1673-3185.2017.03.010.
    [12]
    TÜRKER L. Thermobaric and enhanced blast explosives (TBX and EBX) [J]. Defence Technology, 2016, 12(6): 423–445. DOI: 10.1016/j.dt.2016.09.002.
    [13]
    张洪武, 何扬, 张昌权. 空中爆炸冲击波地面荷载的数值模拟 [J]. 爆炸与冲击, 1992, 12(2): 156–165.

    ZHANG Hongwu, HE Yang, ZHANG Changquan. Numerical simulation on ground surface loading of shock wave from air explosions [J]. Explosion and Shock Waves, 1992, 12(2): 156–165.
    [14]
    赵海涛, 王成. 空中爆炸问题的高精度数值模拟研究 [J]. 兵工学报, 2013, 34(12): 1536–1546. DOI: 10.3969/j.issn.1000-1093.2013.12.008.

    ZHAO Haitao, WANG Cheng. High resolution numerical simulation of air explosion [J]. Acta Armamentarii, 2013, 34(12): 1536–1546. DOI: 10.3969/j.issn.1000-1093.2013.12.008.
    [15]
    BAKER W E. Explosions in air [M]. USA: University of Texas Press, 1973: 55−95.
    [16]
    姚成宝, 李若, 田宙, 等. 空气自由场中强爆炸冲击波传播二维数值模拟 [J]. 爆炸与冲击, 2015, 35(4): 585–590. DOI: 10.11883/1001-1455(2015)04-0585-06.

    YAO Chengbao, LI Ruo, TIAN Zhou, et al. Two dimensional simulation for shock wave produced by strong explosion in free air [J]. Explosion and Shock Waves, 2015, 35(4): 585–590. DOI: 10.11883/1001-1455(2015)04-0585-06.
    [17]
    姚成宝, 浦锡锋, 寿列枫, 等. 强爆炸冲击波在不均匀空气中传播数值模拟 [J]. 计算力学学报, 2015, 32(S1): 6–9.

    YAO Chengbao, PU Xifeng, SHOU Liefeng, et al. Numeircal simulation of blast wave propagation in nonuniform air [J]. Chinese Journal of Computational Mechanics, 2015, 32(S1): 6–9.
    [18]
    SYMBALISTY E M D, ZINN J, WHITAKER R W. RADFLO physics and algorithms: LA-12988-MS [R]. USA: Los Alamos National Lab, 1995. DOI: 10.2172/110714.
    [19]
    SETHIAN J A. Evolution, implementation, and application of level set and fast marching methods for advancing fronts [J]. Journal of Computational Physics, 2001, 169(2): 503–555. DOI: 10.1006/jcph.2000.6657.
    [20]
    SUSSMAN M, SMEREKA P, OSHER S. A level set approach for computing solutions to incompressible two-phase flow [J]. Journal of Computational Physics, 1994, 114(1): 146–159. DOI: 10.1006/jcph.1994.1155.
    [21]
    DI Yana, LI Ruo, TANG Tao, et al. Level set calculations for incompressible two-phase flows on a dynamically adaptive grid [J]. Journal of Scientific Computing, 2007, 31(1/2): 75–98. DOI: 1007/s10915-006-9119-3.
    [22]
    TORO E F. Riemann solvers and numerical methods for fluid dynamics [M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009: 102-200. DOI: 10.1007/b79761.
    [23]
    LI R, WU S N. h-adaptive mesh method with double tolerance adaptive strategy for hyperbolic conservation laws [J]. Journal of Scientific Computing, 2013, 56(3): 616–636. DOI: 10.1007/s10915-013-9692-1.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (5383) PDF downloads(138) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return