Citation: | LIU Tianqi. Numerical simulation on characteristics of impinging air flow propagationand CO formation in lignite explosion[J]. Explosion And Shock Waves, 2019, 39(10): 105401. doi: 10.11883/bzycj-2018-0297 |
[1] |
金龙哲.矿井粉尘防治理论[M]. 北京: 科学出版社, 2010: 33−35.
|
[2] |
景国勋, 杨书召. 煤尘爆炸传播特性的实验研究 [J]. 煤炭学报, 2010, 35(4): 605–608. DOI: 10.13225/j.cnki.jccs.2010. 04.023.
JING Guoxun, YANG Shuzhao. Experimental study on flame propagation characteristic of coal dust explosion [J]. Journal of China Coal Society, 2010, 35(4): 605–608. DOI: 10.13225/j.cnki.jccs.2010. 04.023.
|
[3] |
毕明树.气体和粉尘爆炸防治工程学[M]. 北京: 化学工业出版社, 2012: 20−26.
|
[4] |
ABBASI T, ABBASI S A. Dust explosion: cases, causes, consequences, and control [J]. Journal of Hazardous Materials, 2007, 140(1): 7–44.
|
[5] |
ECKHOFF R K. Current status and expected future trends in dust explosion research [J]. Journal of Loss Prevention in the Process Industries, 2005, 18(4): 225–237.
|
[6] |
司荣军.矿井瓦斯煤尘爆炸传播规律研究[D]. 青岛: 山东科技大学, 2007: 25−37; 1−25.
|
[7] |
ECKHOFF R K. Understanding dust explosions: the role of powder science and technology [J]. Journal of Loss Prevention in the Process Industries, 2009, 22(1): 105–116. DOI: 10.1016/j.jlp.2008.07.006.
|
[8] |
ELAINE O. Structure and flame speed of dilute and dense layered coal-dust explosions [J]. Journal of Loss Prevention in the Process Industries, 2015, 36(4): 214–222.
|
[9] |
PAWEL K, ALEX H. An investigation of the consequences of primary dust explosions in interconnected vessels [J]. Journal of Hazardous Materials, 2006, 137(2): 752–761. DOI: 10.1016/j.jhazmat.2006.04.029.
|
[10] |
蔡周全, 罗振敏, 程方明. 瓦斯煤尘爆炸传播特性的实验研究 [J]. 煤炭学报, 2009, 34(7): 938–941. DOI: 10.3321/j.issn:0253-9993.2009.07.015.
CAI Zhouquan, LUO Zhenmin, CHENG Fangming. Experimental study on propagation characteristic of gas and coal dust explosion [J]. Journal of China Coal Society, 2009, 34(7): 938–941. DOI: 10.3321/j.issn:0253-9993.2009.07.015.
|
[11] |
刘贞堂.瓦斯煤尘爆炸物证特性参数实验研究[D]. 北京: 中国矿业大学, 2010: 12-28.
|
[12] |
刘义, 孙金华, 陈东梁. 甲烷-煤尘复合体系中煤尘爆炸下限的实验研究 [J]. 安全与环境学报, 2007, 7(4): 129–131. DOI: 10.3969/j.issn.1009-6094.2007.04.033.
LIU Yi, SUN Jinhua, CHEN Dongliang. Experimental study on the lower limit of coal dust explosion in methane-coal dust composite system [J]. Journal of Safety and Environment, 2007, 7(4): 129–131. DOI: 10.3969/j.issn.1009-6094.2007.04.033.
|
[13] |
曹卫国, 徐森, 梁济元. 煤粉爆炸过程中火焰的传播特性 [J]. 爆炸与冲击, 2014, 34(5): 586–593. DOI: 10.11883/1001-1455(2014)05-0586-08.
CAO Weiguo, XU Sen, LIANG Jiyuan. Flame propagation characteristic of coal dust explosion [J]. Explosion and Shock Waves, 2014, 34(5): 586–593. DOI: 10.11883/1001-1455(2014)05-0586-08.
|
[14] |
程磊. 受限空间煤尘爆炸冲击波传播衰减规律研究[D]. 焦作: 河南理工大学, 2011: 41−49.
|
[15] |
周力行. 湍流两相流动与燃烧的数值模拟[M]. 北京: 清华大学出版社, 1991: 19−38.
|
[16] |
FAUNDEZ J, ARENILLAS A, RUBIERA F. Ignition behavior of different rank coals in an entrained flow reactor [J]. Fuel, 2005, 84(17): 2172–2177. DOI: 10.1016/j.fuel.2005.03.028.
|
[17] |
刘建, 姚海飞, 金龙哲. 基于罗森-拉姆勒分布函数的粉尘分散度分析 [J]. 北京科技大学学报, 2010, 32(9): 1101–1106. DOI: 10.13374/j.issn1001-053x.2010.09.001.
LIU Jian, YAO Haifei, JIN Longzhe. Dust dispersion analysis based on Rosen-Rammler distribution function [J]. Journal of Beijing University of Science and Technology, 2010, 32(9): 1101–1106. DOI: 10.13374/j.issn1001-053x.2010.09.001.
|
[1] | YUAN Shuai, TAI Feng, QIAN Xinming, CHENG Donghao. Prediction methods for lower explosion limit of thermal runaway products of lithium-iron phosphate batteries[J]. Explosion And Shock Waves, 2025, 45(2): 021434. doi: 10.11883/bzycj-2023-0452 |
[2] | JIAO Junjie, SHAN Feng, WANG Hancheng, QI Yanjie, PAN Xuchao, FANG Zhong, CHENG Yubo, HE Xiaolan, CI Shengjie, HE Yong. Determination of JWL equation of state based on the detonation product from underwater explosion[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0203 |
[3] | ZHONG Feixiang, ZHENG Ligang, MA Hongyan, DU Depeng, WANG Xi, PAN Rongkun. A study of explosion dynamics of a CH4/O2/CO2 premixed system[J]. Explosion And Shock Waves, 2022, 42(1): 012101. doi: 10.11883/bzycj-2021-0191 |
[4] | CHENG Fangming, NAN Fan, XIAO Yang, LUO Zhenmin, NIU Qiaoxia. Experimental study on the suppression of methane-air explosion by CF3I and CO2[J]. Explosion And Shock Waves, 2022, 42(6): 065402. doi: 10.11883/bzycj-2021-0386 |
[5] | GUO Jiaqi, PEI Bei, XU Mengjiao, LI Shiliang, WEI Shuangming, HU Ziwei. Coupling effect of fuel property parameters on gas/coal dust composite explosion[J]. Explosion And Shock Waves, 2022, 42(11): 115402. doi: 10.11883/bzycj-2022-0300 |
[6] | ZHANG Wenchao, WANG Shu, LIANG Zengyou, QIN Bin, LU Haitao, CHEN Xinyuan, LU Wenjie. A study of blast wave protection efficiency of helmet based on air flow field pressure analysis[J]. Explosion And Shock Waves, 2022, 42(11): 113201. doi: 10.11883/bzycj-2021-0411 |
[7] | ZHOU Yonghao, GAN Bo, JIANG Haipeng, HUANG Lei, GAO Wei. Investigations on the flame propagation characteristics in methane and coal dust hybrid explosions[J]. Explosion And Shock Waves, 2022, 42(1): 015402. doi: 10.11883/bzycj-2021-0064 |
[8] | YANG Chenchen, LI Xiaojie, YAN Honghao, WANG Xiaohong, WANG Yuxin. An inverse method for the equation of state of detonation products from underwater explosion tests[J]. Explosion And Shock Waves, 2019, 39(9): 092201. doi: 10.11883/bzycj-2018-0210 |
[9] | PEI Bei, WEI Shuangming, CHEN Liwei, PAN Rongkun, WANG Yan, YU Minggao, LI Jie. Effect of CO2-ultrafine water mist on initial explosion characteristics of CH4/Air[J]. Explosion And Shock Waves, 2019, 39(2): 025402. doi: 10.11883/bzycj-2018-0147 |
[10] | LIU Tianqi, LI Yucheng, LUO Hongbo. Experimental study on explosion pressure variation law of coal dust with different degrees of metamorphism[J]. Explosion And Shock Waves, 2019, 39(9): 095403. doi: 10.11883/bzycj-2018-0265 |
[11] | LI Runzhi. Minimum explosive concentration of coal dust cloud in the coexistence of gas and coal dust[J]. Explosion And Shock Waves, 2018, 38(4): 913-917. doi: 10.11883/bzycj-2016-0331 |
[12] | Yi Xiangyu, Zhu Yujian, Yang Jiming. Early-stage deformation of liquid drop in shock induced high-speed flow[J]. Explosion And Shock Waves, 2017, 37(5): 853-862. doi: 10.11883/1001-1455(2017)05-0853-10 |
[13] | Zhang Yingxin, Wu Qiang, Liu Chuanhai, Jiang Bingyou, Zhang Baoyong. Experimental study on coal mine gas explosion suppression with inert gas N2/CO2[J]. Explosion And Shock Waves, 2017, 37(5): 906-912. doi: 10.11883/1001-1455(2017)05-0906-07 |
[14] | Liu Zhentang, Lin Song, Zhao Enlai, Zhang Songshan, Guo Rulin. Characteristics of space-time variations of coal dust residues from explosion in a horizontal pipe[J]. Explosion And Shock Waves, 2017, 37(2): 237-242. doi: 10.11883/1001-1455(2017)02-0237-06 |
[15] | Li Yucheng, Liu Tianqi, Zhou Xihua. An energy prediction model for coal dust explosion based on dimensional analysis[J]. Explosion And Shock Waves, 2017, 37(3): 566-570. doi: 10.11883/1001-1455(2017)03-0566-05 |
[16] | Gao Wei, Abe Shuntaro, Rong Jian-zhong, Dobashi Ritsu. Effect of airflow characteristics on flame structure for following lycopodium dust-air mixtures in a long horizontal tube[J]. Explosion And Shock Waves, 2015, 35(3): 372-379. doi: 10.11883/1001-1455-(2015)03-0372-08 |
[17] | QIAN Hai-lin, WANG Zhi-rong, JIANG Jun-cheng. InfluenceofN2/CO2 mixtureonmethaneexplosion[J]. Explosion And Shock Waves, 2012, 32(4): 445-448. doi: 10.11883/1001-1455(2012)04-0445-04 |
[18] | LI Run-zhi. Numericalsimulationofcoaldustexplosioninducedbygasexplosion[J]. Explosion And Shock Waves, 2010, 30(5): 529-534. doi: 10.11883/1001-1455(2010)05-0529-06 |