Volume 39 Issue 10
Oct.  2019
Turn off MathJax
Article Contents
MA Huayuan, LONG Yuan, XIE Quanmin, SONG Ge, ZHOU You, YIN Qin. Prototypical experiment and numerical simulation of ground vibrationresulting from explosion in shallowly buried gas pipelines[J]. Explosion And Shock Waves, 2019, 39(10): 102201. doi: 10.11883/bzycj-2018-0303
Citation: MA Huayuan, LONG Yuan, XIE Quanmin, SONG Ge, ZHOU You, YIN Qin. Prototypical experiment and numerical simulation of ground vibrationresulting from explosion in shallowly buried gas pipelines[J]. Explosion And Shock Waves, 2019, 39(10): 102201. doi: 10.11883/bzycj-2018-0303

Prototypical experiment and numerical simulation of ground vibrationresulting from explosion in shallowly buried gas pipelines

doi: 10.11883/bzycj-2018-0303
  • Received Date: 2018-08-21
  • Rev Recd Date: 2018-11-21
  • Available Online: 2019-09-25
  • Publish Date: 2019-10-01
  • In this paper, we investigated the ground vibration effect caused by high pressure gas pipeline explosion using field experiment and numerical simulation. We found out about the magnitude range and attenuation mechanism of the ground vibration of high-pressure gas pipelines by conducting a full-scale explosion experiment of natural gas pipelines. According to the data analysis, the ground vibration caused by the explosion of the buried natural gas pipeline mainly occurred in the physical explosion process, and the subsequent natural gas deflagration process did not produce obvious ground vibration. Based on the LS-Dyna software, we established a high-pressure gas pipeline blasting experiment model, verified the rationality of the model parameter design by comparing the experimental results with the simulation results, and analyzed the process of the gas-pipe-wall-soil interaction, stress distribution and crack propagation in the pipeline explosion. We found that the pipe cracking was caused by the high-pressure gas pushing the pipe wall to the sides to form a stress concentration at the crack tip, that the pipe wall squeezed the soil at a peak speed of 50 m/s, and that the plastic state generated by the impact gradually attenuated to the elastic stress wave, forming the ground vibration effect. We also revealed the main causes of ground vibration by pipeline explosion. Our study can provide theoretical reference and technical support for the prevention of vibration-related accidents.
  • loading
  • [1]
    王保群, 林燕红, 焦中良. 我国天然气管道现状与发展方向 [J]. 国际石油经济, 2013, 21(8): 76–79; 109−110. DOI: 10.3969/j.issn.1004-7298.2013.08.012.

    WANG Baoqun, LIN Yanhong, JIAO Zhongliang. Status and development direction of China’s natural gas pipelines [J]. International Petroleum Economics, 2013, 21(8): 76–79; 109−110. DOI: 10.3969/j.issn.1004-7298.2013.08.012.
    [2]
    范照伟. 全球天然气发展格局及我国天然气发展方向分析 [J]. 中国矿业, 2018, 27(4): 11–16; 22.

    FAN Zhaowei. Global natural gas development pattern and the analysis of development direction of natural gas in China [J]. China Mining Magazine, 2018, 27(4): 11–16; 22.
    [3]
    党学博, 李怀印. 中亚天然气管道发展现状与特点分析 [J]. 油气储运, 2013, 32(7): 692–697.

    DANG Xuebo, LI Huaiyin. Development and characteristics of central Asian natural gas pipelines [J]. Oil and Gas Storage and Transportation, 2013, 32(7): 692–697.
    [4]
    DONG Gang, XUE Lin, YANG Yun, et al. Evaluation of hazard range for the natural gas jet released from a high-pressure pipeline: a computational parametric study [J]. Journal of Loss Prevention in the Process Industries, 2010, 23(4): 522–530. DOI: 10.1016/j.jlp.2010.04.007.
    [5]
    LOWESMITH B J, HANKINSON G. Large scale experiments to study fires following the rupture of high pressure pipelines conveying natural gas and natural gas/hydrogen mixtures [J]. Process Safety and Environmental Protection, 2013, 91(1): 101–111.
    [6]
    SKLAVOUNOS S, RIGAS F. Estimation of safety distances in the vicinity of fuel gas pipelines [J]. Journal of Loss Prevention in the Process Industries, 2006, 19(1): 24–31. DOI: 10.1016/j.jlp.2005.05.002.
    [7]
    BARALDI D, KOTCHOURKO A, LELYAKIN A, et al. An inter-comparison exercise on CFD model capabilities to simulate hydrogen deflagrations in a tunnel [J]. International Journal of Hydrogen Energy, 2009, 34(18): 7862–7872. DOI: 10.1016/j.ijhydene.2009.06.055.
    [8]
    GALLEGO E, MIGOYA E, MARTIN-VALDEPENAS J M, et al. An intercomparison exercise on the capabilities of CFD models to predict distribution and mixing of H2 in a closed vessel [J]. International Journal of Hydrogen Energy, 2007, 32(13): 2235–2245. DOI: 10.1016/j.ijhydene.2007.04.009.
    [9]
    SU Huayou. Analysis of characteristics of compound vibration and effects to surrounding gas pipeline caused by impact and explosion [J]. Procedia Engineering, 2011, 26: 1835–1843. DOI: 10.1016/j.proeng.2011.11.2374.
    [10]
    YANG S, FANG Q, ZHANG Y, et al. An integrated quantitative hazard analysis method for natural gas jet release from underground gas storage caverns in salt rock.Ⅰ: Models and validation [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(1): 74–81. DOI: 10.1016/j.jlp.2012.09.008.
    [11]
    王德国. 基于管道爆炸数值模拟的架空天然气管道并行间距研究 [J]. 中国石油大学学报(自然科学版), 2013, 37(5): 175–180. DOI: 10.3969/j.issn.1673-5005.2013.05.025.

    WANG Deguo. Safe distance of overhead parallel pipeline calculated by numerical simulation of gas pipeline explosion [J]. Journal of China University of Petroleum (Edition of Natural Science), 2013, 37(5): 175–180. DOI: 10.3969/j.issn.1673-5005.2013.05.025.
    [12]
    谌贵宇, 纪冲, 王棠昱, 等. 爆炸地震波作用下埋地油气管道动力响应研究 [J]. 天然气与石油, 2015, 33(5): 1–5; 7. DOI: 10.3969/j.issn.1006-5539.2015.05.001.

    SHEN Guiyu, JI Chong, WANG Tangyu, et al. Research on dynamic response of buried oil and gas pipelines subjected to blasting seismic waves [J]. Natural Gas and Oil, 2015, 33(5): 1–5; 7. DOI: 10.3969/j.issn.1006-5539.2015.05.001.
    [13]
    杜洋, 马利, 郑津洋, 等. 考虑流固耦合的管道爆炸后果预测与分析 [J]. 浙江大学学报(工学版), 2017, 51(3): 429–435. DOI: 10.3785/j.issn.1008-973X.2017.03.001.

    DU Yang, MA Li, ZHENG Jinyang, et al. Consequences prediction and analysis of pipe explosion considering fluid-structure interaction [J]. Journal of Zhejiang University (Engineering Science), 2017, 51(3): 429–435. DOI: 10.3785/j.issn.1008-973X.2017.03.001.
    [14]
    张振永, 张文伟, 周亚薇, 等. 中俄东线OD 1422 mm埋地管道的断裂控制设计 [J]. 油气储运, 2017, 36(9): 1059–1064. DOI: 10.6047/j.issn.1000-8241.2017.09.013.

    ZHANG Zhenyong, ZHANG Wenwei, ZHOU Yawei, et al. The fracture control design of the OD 1422 mm buried pipeline in China-Russia eastern gas pipeline [J]. Oil and Gas Storage and Transportation, 2017, 36(9): 1059–1064. DOI: 10.6047/j.issn.1000-8241.2017.09.013.
    [15]
    霍春勇, 李鹤, 张伟卫, 等. X80钢级1422 mm大口径管道断裂控制技术 [J]. 天然气工业, 2016, 36(6): 78–83. DOI: 10.3787/j.issn.1000-0976.2016.06.012.

    HUO Chunyong, LI He, ZHANG Weiwei, et al. Fracture control technology for the X80 large OD 1422 mm line pipes [J]. Natural Gas Industry, 2016, 36(6): 78–83. DOI: 10.3787/j.issn.1000-0976.2016.06.012.
    [16]
    MAHDAVI H, KENNY S, PHILLIPS R, et al. Influence of geotechnical loads on local buckling behavior of buried pipelines [C] // 7th International Pipeline Conference. American Society of Mechanical Engineers, 2008: 543−551.
    [17]
    李洪涛, 卢文波, 舒大强, 等. 爆破地震波的能量衰减规律研究 [J]. 岩石力学与工程学报, 2010, 29(S1): 3364–3369.

    LI Hongtao, LU Wenbo, SHU Daqiang, et al. Study of energy attenuation law of blast-induced seismic wave [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1): 3364–3369.
    [18]
    吕涛, 石永强, 黄诚, 等. 非线性回归法求解爆破振动速度衰减公式参数 [J]. 岩土力学, 2007(9): 1871–1878. DOI: 10.3969/j.issn.1000-7598.2007.09.019.

    LV Tao, SHI Yongqiang, HUANG Cheng, et al. Study on attenuation parameters of blasting vibrationby nonlinear regression analysis [J]. Rock and Soil Mechanics, 2007(9): 1871–1878. DOI: 10.3969/j.issn.1000-7598.2007.09.019.
    [19]
    闫孔明, 刘飞成, 朱崇浩, 等. 地震作用下含倾斜软弱夹层斜坡场地的动力响应特性研究 [J]. 岩石力学与工程学报, 2017, 36(11): 2686–2698.

    YAN Kongming, LIU Feicheng, ZHU Chonghao, et al. Dynamic responses of slopes with intercalated soft layers under seismic excitations [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(11): 2686–2698.
    [20]
    MAJKOWSKI A, KOŁODZIEJ M, RAK R J. Joint time-frequency and wavelet analysis an introduction [J]. Metrology and Measurement Systems, 2014, 21(4): 741–758. DOI: 10.2478/mms-2014-0054.
    [21]
    PRABHU K M M, SUNDARAM R S. Some results on fixed-point error analysis of Wigner-Ville distribution [J]. Signal Processing, 1996, 51(3): 235–240. DOI: 10.1016/0165-1684(96)00047-3.
    [22]
    SHI Xiuzhi, XUE Jianguang, CHEN Shouru. Two times time-frequency analysis of bilinear transformation of blasting vibration signal [J]. Journal of Vibration and Shock, 2008, 27(12): 131–134; 185. DOI: 10.13465/j.cnki.jvs.2008.12.005.
    [23]
    ZHONG Guosheng, FANG Yingguang, XU Guoyuan. Evaluation of blasting vibration effect of building structures based on wavelet transform [J]. Journal of Vibration and Shock, 2008, 27(8): 121–124; 129; 182. DOI: 10.13465/j.cnki.jvs.2008.08.038.
    [24]
    AHMED L, ANSELL A. Structural dynamic and stress wave models for the analysis of shotcrete on rock exposed to blasting [J]. Engineering Structures, 2012, 35: 11–17. DOI: 10.1016/j.engstruct.2011.10.008.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(4)

    Article Metrics

    Article views (6300) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return