Citation: | ZHU Zhu, LUO Song, LU Bingju, YU Yong. Numerical simulation of multiphase flow field and trajectory of high-speed oblique water entry of rotating projectile[J]. Explosion And Shock Waves, 2019, 39(11): 113901. doi: 10.11883/bzycj-2018-0315 |
[1] |
WORTHINGTON A M, COLE R S. Impact with a liquid surface studied by the aid of instantaneous photography [J]. Philosophical Transactions of the Royal Society of London, 1900, 189: 175–199.
|
[2] |
WORTHINGTON A M, COLE R S. A study of splashes [M]. New York: Longmans Green and Company, 1908: 25−76.
|
[3] |
SAVCHENKO Y. Supercavitation-problems and perspectives [C] // 4th International Sysmposium on Cavitation. Pasadena, USA: California Institute of Technology, 2001: 1−8.
|
[4] |
SAVCHENKO Y N. Control of supercavitation flow and stability of supercavitating motion of bodies [C] // Vki Lecture Series Supercavitating Flows, 2001.
|
[5] |
SEMENENKO V N. Artificial Supercavitation. Physics and calculation [J]. Materials Research, 1(3): 1−5.
|
[6] |
LOGVINOVICH G V. Hydrodynamics of flows with free boundaries [M]. Kiev: Naukova Dumka, 1969.
|
[7] |
施红辉, 周浩磊, 吴岩, 等. 伴随超空泡产生的高速细长体入水实验研究 [J]. 力学学报, 2012, 44(1): 49–55. DOI: 10.6052/0459-1879-2012-1-lxxb2011-062.
SHI Honghui, ZHOU Haolei, WU Yan, et. al Experiments on water entry of high-speed slender body and the resulting supercavitation [J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(1): 49–55. DOI: 10.6052/0459-1879-2012-1-lxxb2011-062.
|
[8] |
SHI H H, ITOH M, TAKAMI T. Optical observation of the supercavitation induced by high-speed water entry [J]. Journal of Fluids Engineering, 2000, 122(4): 806–810. DOI: 10.1115/1.1310575.
|
[9] |
宋武超, 王聪, 魏英杰, 许昊. 回转体倾斜入水空泡及弹道特性实验 [J]. 北京航空航天大学学报, 2016, 42(11): 2386–2394.
SONG Wuchao, WANG Cong, WEI Yingjie, XU Hao. Experiment of cavity trajectory characteristics of oblique water entry of revolution bodies [J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(11): 2386–2394.
|
[10] |
马庆鹏. 高速射弹入水过程多相流场特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
MA Qingpeng. Investigation of multiphase flow characteristics induced by water entry of high-speed projectiles [D]. Harbin: Harbin Institute of Technology, 2014.
|
[11] |
何春涛. 超空泡射弹结构参数设计与数值模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.
HE Chuntao. Structure parameter design and numerical simulation study on supercavitation projectile [D]. Harbin: Harbin Institute of Technology, 2009.
|
[12] |
孙健. 小尺度回转体入水过程的三维数值模拟[D]. 哈尔滨: 哈尔滨工业大学, 2014.
SUN Jian. Three dimensional simulation in water entry of small scale rotary body [D]. Harbin: Harbin Institute of Technology, 2014.
|
[13] |
宋武超, 王聪, 魏英杰, 等. 不同头型回转体低速倾斜入水过程流场特性数值模拟 [J]. 北京理工大学学报, 2017, 37(7): 661–666, 671.
SONG Wuchao, WANG Cong, WEI Yingjie, et al. Numerical simulation of flow field characteristics of low speed oblique water entry of revolution body [J]. Transaction of Beijing Institute of Technology, 2017, 37(7): 661–666, 671.
|
[14] |
齐亚飞. 弹体高速入水弹道稳定及空泡特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
QI Yafei. Research on the trajectory stability and cavity characteristics of high-speed water entry projectiles [D]. Harbin: Harbin Institute of Technology, 2016.
|
[15] |
赵成功, 王聪, 魏英杰, 等. 细长体水下运动空化流场及弹道特性实验 [J]. 爆炸与冲击, 2017, 37(3): 439–446. DOI: 10.11883/1001-1455(2017)03-0439-08.
ZHAO Chenggong, WANG Cong, WEI Yingjie, et al. Experiment of cavitation and ballistic characteristics of slender body underwater movement [J]. Explosion and Shock Waves, 2017, 37(3): 439–446. DOI: 10.11883/1001-1455(2017)03-0439-08.
|
[16] |
赵成功, 王聪, 孙铁志, 等. 初始扰动对射弹尾拍运动及弹道特性影响分析 [J]. 哈尔滨工业大学学报, 2016, 48(10): 71–76. DOI: 10.11918/j.issn.0367-6234.2016.10.010.
ZHAO Chenggong, WANG Cong, SUN Tiezhi, et al. Analysis of tail-slapping and ballistic characteristics of supercavitating projectiles under different initial disturbances [J]. Journal of Harbin Institute of Technology, 2016, 48(10): 71–76. DOI: 10.11918/j.issn.0367-6234.2016.10.010.
|
[17] |
李佳川. 高速射弹入水过程流体动力与弹道特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
LI Jiachuan. Research on water entry hydrodynamic and trajectory characteristics of high-speed projectiles [D]. Harbin: Harbin Institute of Technology, 2016.
|
[18] |
Fluent Inc. Fluent theory guide [M/DK]. 2017.
|
[19] |
MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications [J]. AIAA Journal, 1994, 32(8): 1598–1605. DOI: 10.2514/3.12149.
|
[20] |
RAYLEIGH L. On the pressure developed in a liquid during the collapse of a spherical cavity [J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science: Series 6, 1917, 34: 94–98. DOI: 10.1080/14786440808635681.
|
[21] |
LEE M, LONGORIA R G, WILSON D E. Cavity dynamics in high-speed water entry [J]. Physics of Fluids, 1997, 9(3): 540–550. DOI: 10.1063/1.869472.
|
[22] |
郭子涛. 弹体入水特性及不同介质中金属靶的抗侵彻性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.
GUO Zitao. Research on characteristics of projectile water entry and ballistic resistance of targets under different mediums [D]. Harbin: Harbin Institute of Technology, 2012.
|