PENG Yong, LU Fangyun, FANG Qin, WU Hao, LI Xiangyu. Analyses of the size effect for projectile penetrations into concrete targets[J]. Explosion And Shock Waves, 2019, 39(11): 113301. doi: 10.11883/bzycj-2018-0402
Citation: PENG Yulin, WU Hao, FANG Qin. Blast loading distributions on the circular sectional bridge columns[J]. Explosion And Shock Waves, 2019, 39(12): 122201. doi: 10.11883/bzycj-2018-0317

Blast loading distributions on the circular sectional bridge columns

doi: 10.11883/bzycj-2018-0317
  • Received Date: 2018-08-27
  • Rev Recd Date: 2018-11-27
  • Available Online: 2019-09-25
  • Publish Date: 2019-12-01
  • Column is the main bearing member in bridge. It is the premise for analyzing the dynamic response of the bridge under blast loading to study the distribution law of blast load acted on bridge columns. Circular sectional bridge column has been selected as the research object, and the corresponding finite element models have been built by using the LS-DYNA software. When the height of burst is less than 0.3 times of the column height, the scaled distance is 0.5−2.1 m/kg1/3 and the column diameter is 0.15−1 m, the distributions of the blast loading impulse along column height and cross-section direction are obtained through numerical simulations. The influential parameters, e.g., the explosive equivalent, height of burst, explosion distance and sectional diameter, have been considered. It is derived that, along the column height, when the contact burst and the height of burst is 0.1 times of the column height, the blast loading impulse on the column front surface approximately follows the " Single linear” distribution. When the height of burst is 0.2 and 0.3 times of the column height, the blast loading impulse approximately follows the " Double linear” distribution. Along the cross-section direction, the ratio of the average net blast loading impulse to the blast impulse on the column front surface is a constant. Furthermore, the resultant net blast loading impulse of bridge column has been obtained, which can put some theoretical basis for blast-resistant analysis and design of bridge columns.
  • [1]
    张涛. 爆炸荷载作用下的桥梁结构特性[D]. 上海: 同济大学, 2013.

    Zhang Tao. Structural characteristics of bridge under blast loads [D]. Shanghai: Tongji University, 2013.
    [2]
    Federal Highway Administration. FOCUS: Accelerating Infrastructure Innovations, Publication No. FHWA-HRT-06-028 [EB/OL]. (2017-06-27)[2018-06-01]. http://www.fhwa.dot.gov/publications/focus/06aug/02.cfm.
    [3]
    翟璐. 沙特持续空袭也门致桥梁炸毁[N/OL]. (2015-04-22)[2018-06-01]. http://www.chinanews.com/tp/hd2011/2015/04-22/508170.shtml.

    ZHAI Lu. Saudi Arabia continuously attack Yemen lead to bridge dynamited [N/OL]. (2015-04-22)[2018-06-01]. http://www.chinanews.com/tp/hd2011/2015/04-22/508170.shtml.
    [4]
    唐彪. 钢筋混凝土墩柱的抗爆性能试验研究[D]. 南京: 东南大学, 2016.

    TANG Biao. Experimental investigation of reinforced concrete bridge piers under blast loading [D]. Nanjing: Southeast University, 2016.
    [5]
    WILLIAMSON E B, BAYRAK O, WILLIAMS G, et al. Blast-resistant highway bridges: design and detailing guidelines [M]. Washington D C: The National Academies Press, 2010.
    [6]
    TANG E K C, HAO H. Numerical simulation of a cable-stayed bridge response to blast loads, Part I: model development and response calculations [J]. Engineering Structures, 2010, 32(10): 3180–3192. DOI: 10.1016/j.engstruct.2010.06.007.
    [7]
    HAO H, TANG E K C. Numerical simulation of a cable-stayed bridge response to blast loads, Part Ⅱ: damage prediction and FRP strengthening [J]. Engineering Structures, 2010, 32(10): 3193–3205. DOI: 10.1016/j.engstruct.2010.06.006.
    [8]
    ISLAM A, YAZDANI N. Performance of AASHTO girder bridges under blast loading [J]. Engineering Structures, 2008, 30(7): 1922–1937. DOI: 10.1016/j.engstruct.2007.12.014.
    [9]
    WINGET D G, MARCHAND K A, WILLIAMSON E B. Analysis and design of critical bridges subjected to blast loads [J]. Journal of Structural Engineering, 2005, 131(8): 1243–1255. DOI: 10.1061/(ASCE)0733-9445(2005)131:8(1243).
    [10]
    WILLIAMS G D, WILLIAMSON E B. Response of reinforced concrete bridge columns subjected to blast loads [J]. Journal of Structural Engineering, 2015, 137(9): 903–913. DOI: 10.1061/(ASCE)ST.1943-541X.0000440.
    [11]
    AASHTO. AASHTO LRFD Bridge design specification [S]. Washington D C: American Association of State Highway and Transportation officials, 2005: 34−36.
    [12]
    BRUNEAU M, FUJIKURA S, Diego L et al. Multihazard-resistant highway bridge pier [C] // Fifth National Seismic Conference on Bridges and Highways. San Francisco: Federal Highway Administration, 2006: 25-28.
    [13]
    QASRAWI Y, HEFFERNAN P J, FAM A. Numerical modeling of concrete-filled FRP tubes’ dynamic behavior under blast and impact loading [J]. Journal of Structural Engineering, 2016, 142(2): 04015106. DOI: 10.1061/(ASCE)ST.1943-541X.0001370.
    [14]
    LI M H, ZONG Z H, LIU L, et al. Experimental and numerical study on damage mechanism of CFDST bridge columns subjected to contact explosion [J]. Engineering Structures, 2018, 159: 265–276. DOI: 10.1016/j.engstruct.2018.01.006.
    [15]
    WILLIAMS G D, WILLIAMSON E B. Procedure for predicting blast loads acting on bridge columns [J]. Journal of Bridge Engineering, 2012, 17(3): 490–499. DOI: 10.1061/(ASCE)BE.1943-5592.0000265.
    [16]
    FUJIKURA S, BRUNEAU M, LOPEZ-GARCIA D. Experimental investigation of multihazard resistant bridge piers having concrete-filled steel tube under blast loading [J]. Journal of Bridge Engineering, 2008, 13(6): 586–594. DOI: 10.1061/(ASCE)1084-0702(2008)13:6(586).
    [17]
    QASRAWI Y, HEFFERNAN P J, FAM A. Numerical determination of equivalent reflected blast parameters acting on circular cross sections [J]. International Journal of Protective Structures, 2015, 6(1): 1–22. DOI: 10.1260/2041-4196.6.1.1.
    [18]
    师燕超. 爆炸荷载作用下钢筋混凝土结构的动态响应行为与损伤破坏机理[D]. 天津: 天津大学, 2009.

    SHI Yanchao. Dynamic response and damage mechanism of reinforced concrete structures under blast loading [D]. Tianjin: Tianjin University, 2009.
    [19]
    ZHANG F R, WU C Q, ZHAO X L, et al. Numerical modeling of concrete-filled double-skin steel square tubular columns under blast loading [J]. Journal of Performance of Constructed Facilities, 2015, 29(5): B4015002. DOI: 10.1061/(ASCE) CF.1943-5509.0000749.
    [20]
    孙珊珊. 爆炸荷载下钢管混凝土柱抗爆性能研究[D]. 西安: 长安大学, 2013.

    SUN Shanshan. Investigation on dynamic response of CFST columns subjected to blast loading [D]. Xi’an: Chang’an University, 2013.
    [21]
    HALLQUIST J O. LS-DYNA keyword user's manual [M]. Version970. Livermore Software Technology Corporation, 2007.
    [22]
    张守中. 爆炸与冲击动力学[M]. 北京: 兵器工业出版社, 1993.

    ZHANG Shouzhong. Explosion and shock dynamics [M]. Beijing: Weapon Industry Press, 1993.
    [23]
    REMENNIKOV A M, UY B. Explosive testing and modelling of square tubular steel columns for near-field detonations [J]. Journal of Constructional Steel Research, 2014, 101(101): 290–303. DOI: 10.1016/j.jcsr.2014.05.027.
    [24]
    HENRYCH J, MAJOR R. The dynamics of explosion and its use [M]. Amsterdam: Elsevier, 1979.
  • Cited by

    Periodical cited type(14)

    1. 徐天涵,谢方,何勇. 刚性弹侵彻缩比实验尺寸效应分析. 南京理工大学学报. 2024(02): 141-147 .
    2. 余庆波,钟世威,葛超. 破片侵彻混凝土毁伤效应研究. 北京理工大学学报. 2023(03): 259-266 .
    3. 徐立志,韩志远,周峰,胖世铭,杜忠华,高光发. PELE侵彻金属靶破碎效应的相似分析. 高压物理学报. 2023(01): 141-150 .
    4. 程月华,周飞,吴昊. 抗战斗部侵彻爆炸作用的混凝土遮弹层设计. 爆炸与冲击. 2023(04): 113-130 . 本站查看
    5. 洪智捷,杨耀宗,孔祥振,方秦. 刚性弹侵彻/贯穿混凝土靶体的工程实用化计算模型. 爆炸与冲击. 2023(08): 67-80 . 本站查看
    6. 李旭,刘彦,闫俊伯,时振清,王虹富,许迎亮,黄风雷. 基于区块划分并行填充的混凝土细观建模方法及其在弹体超高速侵彻中应用. 兵工学报. 2023(12): 3543-3561 .
    7. 高飞,邓树新,张国凯,纪玉国,刘晨康,王明洋. 缩比模型弹侵彻岩石靶尺寸效应试验研究与理论分析. 兵工学报. 2023(12): 3601-3612 .
    8. 程月华,姜鹏飞,吴昊,谭可可,方秦. 考虑尺寸效应的典型钻地弹侵彻混凝土深度分析. 爆炸与冲击. 2022(06): 85-99 . 本站查看
    9. 张见升,孙浩,李超,李波. 典型破片破坏混凝土靶毁伤试验研究. 兵器装备工程学报. 2022(09): 309-314 .
    10. 高伟亮,孙桂娟,杨建超,金栋梁,吴飚,邓国强. 国外钻地武器侵彻试验用弹等效模拟技术研究. 防护工程. 2022(05): 21-25 .
    11. 徐柳云,张元迪. 爆炸载荷作用下混凝土靶板动态响应的细观模拟. 爆炸与冲击. 2022(12): 37-51 . 本站查看
    12. 米振国,石云波,张婕,滑志成,都捷豪. 侵彻效应混凝土靶HJC本构模型研究. 中国测试. 2021(07): 31-35 .
    13. 王安宝,邓国强,杨秀敏,任王军,周布奎,张磊,张想柏. 一个新的通用型侵彻深度计算公式. 土木工程学报. 2021(10): 36-46 .
    14. 吴飚,任辉启,陈力,杨建超,黄家蓉,高伟亮,金栋梁. 弹体侵彻混凝土尺度效应试验研究与理论分析. 防护工程. 2020(02): 1-10 .

    Other cited types(2)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Article Metrics

    Article views (4749) PDF downloads(116) Cited by(16)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return