Citation: | LI Zhijie, YOU Xiaochuan, LIU Zhanli, DU Zhibo, ZHANG Yi, YANG Ce, ZHUANG Zhuo. Numerical simulation of the mechanism of traumatic brain injury induced by blast shock waves[J]. Explosion And Shock Waves, 2020, 40(1): 015901. doi: 10.11883/bzycj-2018-0348 |
[1] |
TANIELIAN T, JAYCOX L H. Invisible wounds of war [R]. Santa Monica, CA: RAND Corporation, 2008. DOI: 10.1037/e527802010-001.
|
[2] |
DEPALMA R G, BURRIS D G, CHAMPION H R, et al. Blast injuries [J]. New England Journal of Medicine, 2005, 352(13): 1335–1342. DOI: 10.1056/NEJMra042083.
|
[3] |
MOORE D F, RADOVITZKY R A, SHUPENKO L, et al. Blast physics and central nervous system injury [J]. Future Neurology, 2008, 3(3): 243–250. DOI: 10.2217/14796708.3.3.243.
|
[4] |
VERSACE J. A review of severity index [C] // Proceedings of the 15th Stapp Car Crash Conference. San Diego: Society of Automotive Engineers, 1971: 771−796. DOI: 10.4271/710881.
|
[5] |
NEWMAN J A. A generalized acceleration model for brain injury threshold (GAMBIT) [C] // Proceedings of International IRCOBI Conference. 1986.
|
[6] |
NEWMAN J A, SHEWCHENKO N. A proposed new biomechanical head injury assessment function: the maximum power index [R]. SAE Technical Paper, 2000.
|
[7] |
CERNAK I, WANG Z G, JIANG J X, et al. Ultrastructural and functional characteristics of blast injury-induced neurotrauma [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 2001, 50(4): 695–706. DOI: 10.1097/00005373-200104000-00017.
|
[8] |
LIU M D, ZHANG C, LIU W B, et al. A novel rat model of blast-induced traumatic brain injury simulating different damage degree: implications for morphological, neurological, and biomarker changes [J]. Frontiers in Cellular Neuroscience, 2015, 9: 168. DOI: 10.3389/fncel.2015.00168.
|
[9] |
CLOOTS R J H, VAN DOMMELEN J A W, KLEIVEN S, et al. Traumatic brain injury at multiple length scales: relating diffuse axonal injury to discrete axonal impairment [C] // IRCOBI conference. 2010.
|
[10] |
CLOOTS R J H, VAN DOMMELEN J A W, GEERS M G D. A tissue-level anisotropic criterion for brain injury based on microstructural axonal deformation [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 5(1): 41–52. DOI: 10.1016/j.jmbbm.2011.09.012.
|
[11] |
CLOOTS R J H, VAN DOMMELEN J A W, KLEIVEN S, et al. Multi-scale mechanics of traumatic brain injury: predicting axonal strains from head loads [J]. Biomechanics and Modeling in Mechanobiology, 2013, 12(1): 137–150. DOI: 10.1007/s10237-012-0387-6.
|
[12] |
RADOVITZKY R, SOCRATE S, TABER K, et al. Investigations of tissue-level mechanisms of primary blast injury through modeling, simulation, neuroimaging and neuropathological studies [R]. Massachusetts Institute of Technology Cambridge, 2012. DOI: 10.21236/ada573887.
|
[13] |
JEAN A, NYEIN M K, ZHENG J Q, et al. An animal-to-human scaling law for blast-induced traumatic brain injury risk assessment [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(43): 15310–15315. DOI: 10.1073/pnas.1415743111.
|
[14] |
GOELLER J, WARDLAW A, TREICHLER D, et al. Investigation of cavitation as a possible damage mechanism in blast-induced traumatic brain injury [J]. Journal of Neurotrauma, 2012, 29(10): 1970–1981. DOI: 10.1089/neu.2011.2224.
|
[15] |
SALZAR R S, TREICHLER D, WARDLAW A, et al. Experimental investigation of cavitation as a possible damage mechanism in blast-induced traumatic brain injury in post-mortem human subject heads [J]. Journal of Neurotrauma, 2017, 34(8): 1589–1602. DOI: 10.1089/neu.2016.4600.
|
[16] |
FRANCK C. Microcavitation: the key to modeling blast traumatic brain injury? [J]. Concussion, 2017, 2(3): CNC47. DOI: 10.2217/cnc-2017-0011.
|
[17] |
BHATTACHARJEE Y. Shell shock revisited: solving the puzzle of blast trauma [J]. Science, 2008, 319: 406–408. DOI: 10.1126/science.319.5862.406.
|
[18] |
COURTNEY A C, COURTNEY M W. A thoracic mechanism of mild traumatic brain injury due to blast pressure waves [J]. Medical Hypotheses, 2009, 72(1): 76–83. DOI: 10.1016/j.mehy.2008.08.015.
|
[19] |
MOSS W C, KING M J, BLACKMAN E G. Skull flexure from blast waves: a mechanism for brain injury with implications for helmet design [J]. Physical Review Letters, 2009, 103(10): 108702. DOI: 10.1103/PhysRevLett.103.108702.
|
[20] |
FELTEN D L, O’BANION M K, MAIDA M S. Netter’s atlas of neuroscience [M]. Elsevier Health Sciences, 2015: 49.
|
[21] |
CHAFI M S, KARAMI G, ZIEJEWSKI M. Biomechanical assessment of brain dynamic responses due to blast pressure waves [J]. Annals of Biomedical Engineering, 2010, 38(2): 490–504. DOI: 10.1007/s10439-009-9813-z.
|
[22] |
KLEIVEN S. Predictors for traumatic brain injuries evaluated through accident reconstructions [J]. Stapp Car Crash Journal, 2007, 51: 81–114. DOI: 10.12783/dtcse/wcne2017/19838.
|
[23] |
GANPULE S, ALAI A, PLOUGONVEN E, et al. Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches [J]. Biomechanics and Modeling in Mechanobiology, 2013, 12(3): 511–531. DOI: 10.1007/s10237-012-0421-8.
|
[24] |
CHAFI M S, GANPULE S, GU L X, et al. Dynamic response of brain subjected to blast loadings: influence of frequency ranges [J]. International Journal of Applied Mechanics, 2011, 3(4): 803–823. DOI: 10.1142/S175882511100124X.
|
[25] |
WANG C, PAHK J B, BALABAN C D, et al. Biomechanical assessment of the bridging vein rupture of blast-induced traumatic brain injury using the finite element human head model [C] // ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012: 795−805. DOI: 10.1115/imece2012-88739.
|
[26] |
MOORE D F, JÉRUSALEM A, NYEIN M, et al. Computational biology:modeling of primary blast effects on the central nervous system [J]. Neuroimage, 2009, 47: T10–T20. DOI: 10.1016/j.neuroimage.2009.02.019.
|
[27] |
CHEN Y, OSTOJA-STARZEWSKI M. MRI-based finite element modeling of head trauma: spherically focusing shear waves [J]. Acta Mechanica, 2010, 213(1/2): 155–167. DOI: 10.1007/s00707-009-0274-0.
|
[28] |
ZOGHI-MOGHADAM M, SADEGH A M. Global/local head models to analyse cerebral blood vessel rupture leading to ASDH and SAH [J]. Computer Methods in Biomechanics and Biomedical Engineering, 2009, 12(1): 1–12. DOI: 10.1080/10255840802020420.
|
[29] |
NAHUM A M, SMITH R, WARD C C. Intracranial pressure dynamics during head impact [C] // Proceedings of 21st Stapp Car Crash Conference. Pennsylvania: Society of Automotive Engineers, 1977: 339−366. DOI: 10.4271/770922.
|
[30] |
BENEDICT J V, HARRIS E H, VON ROSENBERG D U. An analytical investigation of the cavitation hypothesis of brain damage [J]. Journal of Basic Engineering, 1970, 92(3): 597–603. DOI: 10.1115/1.3425083.
|
[31] |
WARD C, CHAN M, NAHUM A. Intracranial pressure: a brain injury criterion [R]. SAE Technical Paper, 1980. DOI: 10.4271/801304.
|