Citation: | LI Zhijie, YOU Xiaochuan, LIU Zhanli, DU Zhibo, ZHANG Yi, YANG Ce, ZHUANG Zhuo. Numerical simulation of the mechanism of traumatic brain injury induced by blast shock waves[J]. Explosion And Shock Waves, 2020, 40(1): 015901. doi: 10.11883/bzycj-2018-0348 |
[1] |
TANIELIAN T, JAYCOX L H. Invisible wounds of war [R]. Santa Monica, CA: RAND Corporation, 2008. DOI: 10.1037/e527802010-001.
|
[2] |
DEPALMA R G, BURRIS D G, CHAMPION H R, et al. Blast injuries [J]. New England Journal of Medicine, 2005, 352(13): 1335–1342. DOI: 10.1056/NEJMra042083.
|
[3] |
MOORE D F, RADOVITZKY R A, SHUPENKO L, et al. Blast physics and central nervous system injury [J]. Future Neurology, 2008, 3(3): 243–250. DOI: 10.2217/14796708.3.3.243.
|
[4] |
VERSACE J. A review of severity index [C] // Proceedings of the 15th Stapp Car Crash Conference. San Diego: Society of Automotive Engineers, 1971: 771−796. DOI: 10.4271/710881.
|
[5] |
NEWMAN J A. A generalized acceleration model for brain injury threshold (GAMBIT) [C] // Proceedings of International IRCOBI Conference. 1986.
|
[6] |
NEWMAN J A, SHEWCHENKO N. A proposed new biomechanical head injury assessment function: the maximum power index [R]. SAE Technical Paper, 2000.
|
[7] |
CERNAK I, WANG Z G, JIANG J X, et al. Ultrastructural and functional characteristics of blast injury-induced neurotrauma [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 2001, 50(4): 695–706. DOI: 10.1097/00005373-200104000-00017.
|
[8] |
LIU M D, ZHANG C, LIU W B, et al. A novel rat model of blast-induced traumatic brain injury simulating different damage degree: implications for morphological, neurological, and biomarker changes [J]. Frontiers in Cellular Neuroscience, 2015, 9: 168. DOI: 10.3389/fncel.2015.00168.
|
[9] |
CLOOTS R J H, VAN DOMMELEN J A W, KLEIVEN S, et al. Traumatic brain injury at multiple length scales: relating diffuse axonal injury to discrete axonal impairment [C] // IRCOBI conference. 2010.
|
[10] |
CLOOTS R J H, VAN DOMMELEN J A W, GEERS M G D. A tissue-level anisotropic criterion for brain injury based on microstructural axonal deformation [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 5(1): 41–52. DOI: 10.1016/j.jmbbm.2011.09.012.
|
[11] |
CLOOTS R J H, VAN DOMMELEN J A W, KLEIVEN S, et al. Multi-scale mechanics of traumatic brain injury: predicting axonal strains from head loads [J]. Biomechanics and Modeling in Mechanobiology, 2013, 12(1): 137–150. DOI: 10.1007/s10237-012-0387-6.
|
[12] |
RADOVITZKY R, SOCRATE S, TABER K, et al. Investigations of tissue-level mechanisms of primary blast injury through modeling, simulation, neuroimaging and neuropathological studies [R]. Massachusetts Institute of Technology Cambridge, 2012. DOI: 10.21236/ada573887.
|
[13] |
JEAN A, NYEIN M K, ZHENG J Q, et al. An animal-to-human scaling law for blast-induced traumatic brain injury risk assessment [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(43): 15310–15315. DOI: 10.1073/pnas.1415743111.
|
[14] |
GOELLER J, WARDLAW A, TREICHLER D, et al. Investigation of cavitation as a possible damage mechanism in blast-induced traumatic brain injury [J]. Journal of Neurotrauma, 2012, 29(10): 1970–1981. DOI: 10.1089/neu.2011.2224.
|
[15] |
SALZAR R S, TREICHLER D, WARDLAW A, et al. Experimental investigation of cavitation as a possible damage mechanism in blast-induced traumatic brain injury in post-mortem human subject heads [J]. Journal of Neurotrauma, 2017, 34(8): 1589–1602. DOI: 10.1089/neu.2016.4600.
|
[16] |
FRANCK C. Microcavitation: the key to modeling blast traumatic brain injury? [J]. Concussion, 2017, 2(3): CNC47. DOI: 10.2217/cnc-2017-0011.
|
[17] |
BHATTACHARJEE Y. Shell shock revisited: solving the puzzle of blast trauma [J]. Science, 2008, 319: 406–408. DOI: 10.1126/science.319.5862.406.
|
[18] |
COURTNEY A C, COURTNEY M W. A thoracic mechanism of mild traumatic brain injury due to blast pressure waves [J]. Medical Hypotheses, 2009, 72(1): 76–83. DOI: 10.1016/j.mehy.2008.08.015.
|
[19] |
MOSS W C, KING M J, BLACKMAN E G. Skull flexure from blast waves: a mechanism for brain injury with implications for helmet design [J]. Physical Review Letters, 2009, 103(10): 108702. DOI: 10.1103/PhysRevLett.103.108702.
|
[20] |
FELTEN D L, O’BANION M K, MAIDA M S. Netter’s atlas of neuroscience [M]. Elsevier Health Sciences, 2015: 49.
|
[21] |
CHAFI M S, KARAMI G, ZIEJEWSKI M. Biomechanical assessment of brain dynamic responses due to blast pressure waves [J]. Annals of Biomedical Engineering, 2010, 38(2): 490–504. DOI: 10.1007/s10439-009-9813-z.
|
[22] |
KLEIVEN S. Predictors for traumatic brain injuries evaluated through accident reconstructions [J]. Stapp Car Crash Journal, 2007, 51: 81–114. DOI: 10.12783/dtcse/wcne2017/19838.
|
[23] |
GANPULE S, ALAI A, PLOUGONVEN E, et al. Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches [J]. Biomechanics and Modeling in Mechanobiology, 2013, 12(3): 511–531. DOI: 10.1007/s10237-012-0421-8.
|
[24] |
CHAFI M S, GANPULE S, GU L X, et al. Dynamic response of brain subjected to blast loadings: influence of frequency ranges [J]. International Journal of Applied Mechanics, 2011, 3(4): 803–823. DOI: 10.1142/S175882511100124X.
|
[25] |
WANG C, PAHK J B, BALABAN C D, et al. Biomechanical assessment of the bridging vein rupture of blast-induced traumatic brain injury using the finite element human head model [C] // ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012: 795−805. DOI: 10.1115/imece2012-88739.
|
[26] |
MOORE D F, JÉRUSALEM A, NYEIN M, et al. Computational biology:modeling of primary blast effects on the central nervous system [J]. Neuroimage, 2009, 47: T10–T20. DOI: 10.1016/j.neuroimage.2009.02.019.
|
[27] |
CHEN Y, OSTOJA-STARZEWSKI M. MRI-based finite element modeling of head trauma: spherically focusing shear waves [J]. Acta Mechanica, 2010, 213(1/2): 155–167. DOI: 10.1007/s00707-009-0274-0.
|
[28] |
ZOGHI-MOGHADAM M, SADEGH A M. Global/local head models to analyse cerebral blood vessel rupture leading to ASDH and SAH [J]. Computer Methods in Biomechanics and Biomedical Engineering, 2009, 12(1): 1–12. DOI: 10.1080/10255840802020420.
|
[29] |
NAHUM A M, SMITH R, WARD C C. Intracranial pressure dynamics during head impact [C] // Proceedings of 21st Stapp Car Crash Conference. Pennsylvania: Society of Automotive Engineers, 1977: 339−366. DOI: 10.4271/770922.
|
[30] |
BENEDICT J V, HARRIS E H, VON ROSENBERG D U. An analytical investigation of the cavitation hypothesis of brain damage [J]. Journal of Basic Engineering, 1970, 92(3): 597–603. DOI: 10.1115/1.3425083.
|
[31] |
WARD C, CHAN M, NAHUM A. Intracranial pressure: a brain injury criterion [R]. SAE Technical Paper, 1980. DOI: 10.4271/801304.
|
[1] | ZHANG Yihan, LIU Yuzhe, WANG Yang, ZHAN Xianghao, ZHOU Zhou, WANG Lizhen, FAN Yubo. Advances in finite element models of the human head for traumatic brain injury research[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0393 |
[2] | LI Yong, LUO Hongyu, FENG Xiaowei, HU Yupeng, ZHANG Jun, LI Haitao. Influence of altitude on the propagation of explosion shock waves in a long straight tunnel[J]. Explosion And Shock Waves, 2024, 44(3): 032201. doi: 10.11883/bzycj-2023-0230 |
[3] | ZHANG Shizhong, LI Jinping, KANG Yue, HU Jianqiao, CHEN Hong. Generation of near-field blast wave by means of shock tube[J]. Explosion And Shock Waves, 2024, 44(12): 121434. doi: 10.11883/bzycj-2024-0204 |
[4] | ZHANG Dianyuan, YU Chen, HAO Wenyong, LI Yuan, HOU Bing, SUO Tao. Injury properties of porcine lung under blast load[J]. Explosion And Shock Waves, 2024, 44(12): 121433. doi: 10.11883/bzycj-2024-0262 |
[5] | LUO Zongmu, LI Ke, CHEN Hao, ZHANG Yuwu, LIANG Minzu, LIN Yuliang. Acceleration response test and damage analysis of dummy head under explosion shock wave[J]. Explosion And Shock Waves, 2024, 44(12): 121435. doi: 10.11883/bzycj-2024-0242 |
[6] | LI Rui, LI Xiaochen, WANG Quan, YUAN Yuhong, HONG Xiaowen, HUANG Yinsheng. Propagation characteristics of blast wave in diminished ambient temperature and pressure environments[J]. Explosion And Shock Waves, 2023, 43(2): 022301. doi: 10.11883/bzycj-2022-0188 |
[7] | ZHANG Wenhao, YU Yonggang. Analysis of gas-eroding barrel characteristics based on fluid-solid interaction[J]. Explosion And Shock Waves, 2023, 43(3): 034201. doi: 10.11883/bzycj-2022-0390 |
[8] | KANG Yue, MA Tian, HUANG Xiancong, ZHUANG Zhuo, LIU Zhanli, ZENG Fan, HUANG Chao. Advances in numerical simulation of blast-induced traumatic brain injury: modeling, mechanical mechanism and protection[J]. Explosion And Shock Waves, 2023, 43(6): 061101. doi: 10.11883/bzycj-2022-0521 |
[9] | CHEN Longming, LI Zhibin, CHEN Rong, ZOU Daoxun. An experimental study on propagation characteristics of blast waves under plateau environment[J]. Explosion And Shock Waves, 2022, 42(5): 053206. doi: 10.11883/bzycj-2021-0279 |
[10] | ZHOU Lang, XU Chunguang. An algorithm for building structural damage under the effect of shock wave[J]. Explosion And Shock Waves, 2022, 42(10): 104201. doi: 10.11883/bzycj-2021-0415 |
[11] | MIAO Fuxing, WANG Hui, WANG Lili, HE Wenming, CHEN Xiabo, GONG Wenbo, DING Yuanyuan, HUAN Shi, XU Chong, XIE Yanqing, LU Yicheng, SHEN Lijun. Relationship between the blood-vessel coupling characteristics and the propagation of pulse waves[J]. Explosion And Shock Waves, 2020, 40(4): 041101. doi: 10.11883/bzycj-2020-0082 |
[12] | JIA Leiming, WANG Shufei, TIAN Zhou. A theoretical method for the calculation of flow field behind blast reflected waves[J]. Explosion And Shock Waves, 2019, 39(6): 064201. doi: 10.11883/bzycj-2018-0167 |
[13] | YE Linzheng, ZHU Xijing, WANG Jianqing. Fluid-solid coupling model of micro-jet impact from acoustic cavitation bubble collapses near a wall and pit inversion analysis[J]. Explosion And Shock Waves, 2019, 39(6): 062201. doi: 10.11883/bzycj-2018-0118 |
[14] | Sun Huixiang, Lu Feng, Chi Weisheng, Kang Ting, Liu Yuanfei. Dynamic interaction between surrounding rock and initial supporting structure subjected to explosion shock wave[J]. Explosion And Shock Waves, 2017, 37(4): 670-676. doi: 10.11883/1001-1455(2017)04-0670-07 |
[15] | Guo Pan, Wu Wen-hua, Liu Jun, Wu Zhi-gang. Numerical simulation of fluid-structure interaction in defect-contained charge of solid rocket motor subjected to shock waves[J]. Explosion And Shock Waves, 2014, 34(1): 93-98. |
[16] | Liu Yun-long, Wang Yu, Zhang A-man. Whipping responses of double cylindrical shell structures to underwater explosion based on DAA2[J]. Explosion And Shock Waves, 2014, 34(6): 691-700. doi: 10.11883/1001-1455(2014)06-0691-10 |
[17] | ZhouJie, TaoGang, PanBao-qing, ZhangHong-we. Mechanismofblasttraumatohumanthorax:Afiniteelementstudy[J]. Explosion And Shock Waves, 2013, 33(3): 315-321. doi: 10.11883/1001-1455(2013)03-0315-06 |
[18] | ZHOU Jie, TAO Gang, WANG Jian. Numericalsimulationoflunginjuryinducedbyshockwave[J]. Explosion And Shock Waves, 2012, 32(4): 418-422. doi: 10.11883/1001-1455(2012)04-0418-05 |
[19] | GUO Jun, YANG Wen-shan, YAO Xiong-liang, ZAHNG A-man, REN Shao-fei. Underwaterexplosioncalculationwithafieldseparationtechnique[J]. Explosion And Shock Waves, 2011, 31(3): 295-299. doi: 10.11883/1001-1455(2011)03-0295-05 |
[20] | LIAO Hua-lin, LI Gen-sheng. Influences of the pore-fluid coupling effect on impact stress in rocks impacted by water jets[J]. Explosion And Shock Waves, 2006, 26(1): 84-90. doi: 10.11883/1001-1455(2006)01-0084-07 |
1. | 贾时雨,王成,徐文龙,马东,齐方方. 环形复合内衬头盔冲击波防护性能研究. 兵工学报. 2025(01): 60-69 . ![]() | |
2. | 黄浩,崔海林,田晓丽,吴浩. 多孔结构对冲击波的衰减影响研究. 机械设计与制造工程. 2024(01): 11-15 . ![]() | |
3. | 田金,刘少宝,卢天健,徐峰. 持续性高过载下人脑的多孔弹性响应. 应用数学和力学. 2024(06): 691-709 . ![]() | |
4. | 杨昆,谭向龙,吴艳青,李梦阳,张钊,曾商鉴. 爆炸冲击波作用于生物体损伤的数值仿真研究进展. 兵器装备工程学报. 2024(09): 75-81 . ![]() | |
5. | 康越,马天,王俊龙,张逸之,张文博,韩笑,栗志杰. 不同海拔高度炮口冲击波动态演化特性数值模拟研究. 爆炸与冲击. 2024(12): 57-73 . ![]() | |
6. | Rui Yuan,Yaoke Wen,Weixiao Nie,Dongxu Liu,Zhouyu Shen,Haoran Xu. Dynamic response of armor-piercing bullets to blunt and penetration with protective gelatin. Theoretical & Applied Mechanics Letters. 2024(04): 270-279 . ![]() | |
7. | 范志强,常瀚林,何天明,郑航,胡敬坤,谭晓丽. 基于PVDF复合压电效应的低强度冲击波柔性测量. 爆炸与冲击. 2023(01): 73-85 . ![]() | |
8. | 康越,马天,黄献聪,庄茁,柳占立,曾繁,黄超. 颅脑爆炸伤数值模拟研究进展:建模、力学机制及防护. 爆炸与冲击. 2023(06): 3-38 . ![]() | |
9. | 黄安,曹国鑫. 爆炸冲击波作用下均质颅骨模型有效性研究. 力学学报. 2023(08): 1774-1787 . ![]() | |
10. | 喻伯牙,高俊宏,王鸿,卢青,范小琳,李亮,李晓. 爆炸冲击波所致的肺损伤与脑损伤. 中国工业医学杂志. 2023(04): 332-335 . ![]() | |
11. | 鲁菁,屈媛媛,邵玉莹,郭述豪,冯楚文,孙维伯,李彬彬,孙冬玮,杨添淞. 创伤性颅脑损伤动物模型研究概况. 神经损伤与功能重建. 2023(09): 534-538+542 . ![]() | |
12. | 杜宁,赵梓淇,熊玮,刘闯,张先锋. 壳体厚度对装药爆炸冲击波特性影响研究. 弹道学报. 2023(03): 72-77 . ![]() | |
13. | 王博,温垚珂,徐诚,刘东旭. 钨合金破片侵彻防弹插板和明胶复合机理研究. 兵器装备工程学报. 2023(11): 38-46+96 . ![]() | |
14. | 蔡志华,贺葳,汪剑辉,王幸,张磊. 爆炸波致颅脑损伤力学机制与防护综述. 兵工学报. 2022(02): 467-480 . ![]() | |
15. | 郭建峤,王言冰,田强,任革学,胡海岩. 人体肌骨的多柔体系统动力学研究进展. 力学进展. 2022(02): 253-310 . ![]() | |
16. | 张文超,王舒,梁增友,覃彬,卢海涛,陈新元,卢文杰. 爆炸冲击波致颅脑冲击伤数值模拟研究. 北京理工大学学报. 2022(09): 881-890 . ![]() | |
17. | 聂伟晓,温垚珂,董方栋,覃彬,罗小豪,童梁成. 破片侵彻戴防弹头盔头部靶标钝击效应数值模拟. 兵工学报. 2022(09): 2075-2085 . ![]() | |
18. | 沈周宇,温垚珂,闫文敏,董方栋,张俊斌,李颖. 手枪弹撞击戴防弹头盔人体头颈部靶标的钝击效应. 兵工学报. 2022(09): 2101-2112 . ![]() | |
19. | 熊漫漫,覃彬,徐诚,安硕,伍杨. 冲击波作用有/无防护颅脑靶标动态响应规律. 兵工学报. 2022(09): 2182-2189 . ![]() | |
20. | 张文超,王舒,梁增友,覃彬,卢海涛,陈新元,卢文杰. 基于空气流场压力分析的头盔冲击波防护效能研究. 爆炸与冲击. 2022(11): 66-78 . ![]() | |
21. | 王小峰,陶钢,徐宁,王鹏,李召,闻鹏. 冲击波诱导水中纳米气泡塌陷的分子动力学分析. 物理学报. 2021(13): 283-301 . ![]() | |
22. | 康越,张仕忠,张远平,柳占立,黄献聪,马天. 基于激波管评价的单兵头面部装备冲击波防护性能研究. 爆炸与冲击. 2021(08): 179-191 . ![]() |