DENG Zhengding, XIANG Shuai, ZHOU Jianrong, WANG Guanshi, WANG Yuemei. Rate correlation and deformation of damage evolutionof non-penetrating fractured rock masses[J]. Explosion And Shock Waves, 2019, 39(8): 083107. doi: 10.11883/bzycj-2018-0391
Citation: DENG Zhengding, XIANG Shuai, ZHOU Jianrong, WANG Guanshi, WANG Yuemei. Rate correlation and deformation of damage evolutionof non-penetrating fractured rock masses[J]. Explosion And Shock Waves, 2019, 39(8): 083107. doi: 10.11883/bzycj-2018-0391

Rate correlation and deformation of damage evolutionof non-penetrating fractured rock masses

doi: 10.11883/bzycj-2018-0391
  • Received Date: 2018-10-12
  • Rev Recd Date: 2019-02-21
  • Publish Date: 2019-08-01
  • The non-penetrating fractured rock mass is the main form of rock mass in nature, and the geometric features of its fractures play a remarkable role in its strength and deformation. Its strain rate also has a significant rate dependence on its damage evolution and viscous effects. Firstly, using the model element method, we treated the dynamic failure process of non-penetrating fractured rock mass as a heterogeneous point with composite damage, static elastic properties and dynamic viscous properties, and improved the Maxwell body that responds to viscoelasticity. Then we combined the meso-damaged body and the macroscopic damage body of fracture damage evolutions into a macro-microscopic composite damage body following the equivalent strain hypothesis and constructed a dynamic damage model considering the macroscopic and microscopic defects of the rock mass. Furthermore, based on the fracture mechanics and strain energy theory, we analyzed the energy mechanism of the macroscopic fracture dynamic expansion of rock mass and obtained the calculation formula of the macroscopic dynamic damage variable of the fractured rock mass, with the initial fracture strain energy, the strain energy of the crack dynamic damage evolution process and the fracture closed strain energy, taken into consideration. Finally, we compared the results from the model calculation with those from experiment and found them in good agreement, thereby proving the rationality of the model. At the same time, we also discussed the influence of fracture inclination, strain rate and rock properties on rock mass deformation characteristics using the model.
  • [1]
    刘学伟, 刘泉声, 陈元, 等. 裂隙形式对岩体强度特征及破坏模式影响的试验研究 [J]. 岩土力学, 2015, 36(S2): 208–214.

    LIU Xuewei, LIU Quansheng, CHEN Yuan, et al. Experimental study of effects of fracture type on strength characteristics and failure modes of fractured rock mass [J]. Rock and Soil Mechanics, 2015, 36(S2): 208–214.
    [2]
    宫凤强, 王进, 李夕兵. 岩石压缩特性的率效应与动态增强因子统一模型 [J]. 岩石力学与工程学报, 2018, 37(7): 1586–1595.

    GONG Fengqiang, WANG Jin, LI Xibing. The rate effect of compression characteristics and a unified model of dynamic increasing factor for rock materials [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(7): 1586–1595.
    [3]
    张平, 李宁, 李贺兰. 动载下两条断续预制裂隙贯通机制研究 [J]. 岩石力学与工程学报, 2006, 25(6): 1210–1217. doi: 10.3321/j.issn:1000-6915.2006.06.019

    ZHANG Ping, LI Ning, LI Helan. Mechanism of fracture coalescence between two pre-existing flaws under dynamic loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(6): 1210–1217. doi: 10.3321/j.issn:1000-6915.2006.06.019
    [4]
    刘红岩, 邓正定, 王新生, 等. 节理岩体动态破坏的SHPB相似材料试验研究 [J]. 岩土力学, 2013, 35(3): 659–665.

    LIU Hongyan, DENG Zhengding, WANG Xinsheng. Similar material test study of dynamic failure of jointed rock mass with SHPB [J]. Rock and Soil Mechanics, 2013, 35(3): 659–665.
    [5]
    李地元, 韩震宇, 孙小磊, 等. 含预制裂隙大理岩SHPB动态力学破坏特性试验研究 [J]. 岩石力学与工程学报, 2017, 36(12): 2872–2883.

    LI Diyuan, HAN Zhenyu, SUN Xiaolei, et al. Characteristics of dynamic failure of marble with artificial flaws under split Hopkinson pressure bar tests [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12): 2872–2883.
    [6]
    李夕兵, 王卫华, 马春德. 不同频率载荷作用下的岩石节理本构模型 [J]. 岩石力学与工程学报, 2007, 26(2): 247–253. doi: 10.3321/j.issn:1000-6915.2007.02.004

    LI Xibing, WANG Weihua, MA Chunde. Constitutive model of rock joints under compression loads with different frequencies [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(2): 247–253. doi: 10.3321/j.issn:1000-6915.2007.02.004
    [7]
    张力民, 吕淑然, 刘红岩. 综合考虑宏细观缺陷的岩体动态损伤本构模型 [J]. 爆炸与冲击, 2015, 35(3): 428–436. DOI: 10.11883/1001-1455-(2015)03-0428-09.

    ZHANG Limin, LU Shuran, LIU Hongyan. A dynamic damage constitutive model of rock mass by comprehensively considering macroscopic and mesoscopic flaws [J]. Explosion and Shock Waves, 2015, 35(3): 428–436. DOI: 10.11883/1001-1455-(2015)03-0428-09.
    [8]
    刘红岩, 王新生, 张力民, 等. 非贯通节理岩体单轴压缩动态损伤本构模型 [J]. 岩土工程学报, 2016, 38(3): 426–436. doi: 10.11779/CJGE201603001

    LIU Hongyan, WANG Xinsheng, ZAHNG Limin. A dynamic damage constitutive model for rock mass with non-persistent joints under uniaxial compression [J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 426–436. doi: 10.11779/CJGE201603001
    [9]
    李杰, 王明洋, 张宁, 等. 裂隙岩体动态损伤演化与体积扩容方程 [J]. 岩石力学与工程学报, 2015, 34(8): 1532–1541.

    LI Jie, WANG Mingyang, ZHANG Ning. An equation for damage development and volumetric dilation of cracked rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(8): 1532–1541.
    [10]
    袁小清, 刘红岩, 刘京平. 基于宏细观损伤耦合的非贯通裂隙岩体本构模型 [J]. 岩土力学, 2015, 36(10): 2804–2814.

    YUAN Xiaoqing, LIU Hongyan, LIU Jingping. Constitutive model of rock mass with non-persistent joints based on coupling macroscopic and mesoscopic damages [J]. Rock and Soil Mechanics, 2015, 36(10): 2804–2814.
    [11]
    王佩新, 曹平, 蒲成志, 等. 单压下节理密度及倾角对类岩石试件强度及变形的影响 [J]. 工程科学学报, 2017, 39(4): 494–501.

    WANG Peixin, CAO Ping, PU Chengzhi, et al. Effect of the density and inclination of joints on the strength and deformation properties of rock-like specimens under uniaxial compression [J]. Chinese Journal of Engineering, 2017, 39(4): 494–501.
    [12]
    FAN X, KULATILAKE P H S W, CHEN X, et al. Crack initiation stress and strain of jointed rock containing multi-cracks under uniaxial compressive loading: a particle flow code approach [J]. Journal of Central South University, 2015, 22(2): 638–645. doi: 10.1007/s11771-015-2565-z
    [13]
    ASHBY M F, SAMMIS C G. The damage mechanics of brittle solids in compression [J]. Pure and Applied Geophysics, 1990, 133(3): 489–521. doi: 10.1007/BF00878002
    [14]
    LEE S, RAVICHANDRAN G. Crack initiation in brittle solids under multiaxial compression [J]. Engineering Fracture Mechanics, 2003, 70(13): 1645–1658. doi: 10.1016/S0013-7944(02)00203-5
    [15]
    李世愚, 和泰名, 尹祥础. 岩石断裂力学 [M]. 北京: 科学出版社, 2015.
    [16]
    孙广忠, 孙毅. 岩体力学原理 [M]. 北京: 科学出版社, 2011.
    [17]
    ROSE L R F. Recent theoretical and experimental results on fast brittle fracture [J]. International Journal of Fracture, 1976, 12(6): 799–813.
    [18]
    FREUND L B, HUTCHINSON J W. Dynamic fracture mechanic [M]. Hemisphere Pub Corp, 1990.
    [19]
    DENG H, NEMAT-NASSER S. Dynamic damage evolution in brittle solids [J]. Mechanics of Materials, 1992, 14(2): 83–103. doi: 10.1016/0167-6636(92)90008-2
    [20]
    宁建国, 任会兰, 方敏杰. 基于椭圆形微裂纹演化与汇合的准脆性材料本构模型 [J]. 科学通报, 2012(21): 1978–1986.

    NING J G, REN H L, FANG M J. A constitutive model based on the evolution and coalescence of elliptical micro-cracks for quasi-brittle materials [J]. Chinese Science Bulletin, 2012(21): 1978–1986.
    [21]
    潘红宇, 葛迪, 张天军, 等. 应变率对岩石裂隙扩展规律的影响 [J]. 煤炭学报, 2018, 43(3): 675–683.

    PAN Hongyu, GE Di, ZHANG Tianjun, et al. Influence of strain rate on the rock fracture propagation law [J]. Journal of China Coal Society, 2018, 43(3): 675–683.
    [22]
    王卫华, 李坤, 王小金, 等. SHPB加载下含不同倾角裂隙的类岩石试样力学特性 [J]. 科技导报, 2016, 34(18): 246–250.

    WANG Weihua, LI Kun, WANG Xiaojin, et al. Experimental study of mechanical properties of rocklike specimens containing single cracks of different inclination angles under SHPB loading [J]. Science and Technology Review, 2016, 34(18): 246–250.
    [23]
    王卫华, 王小金, 姜海涛. 单轴压缩作用下含不同倾角裂隙的类岩石试样力学特性 [J]. 科技导报, 2014, 32(28/29): 48–53.

    WANG Weihua, WANG Xiaojin, JIANG Haitao. Experimental research on mechanical properties of rocklike specimens containing single cracks of different inclination angles under uniaxial compression [J]. Science and Technology Review, 2014, 32(28/29): 48–53.
    [24]
    RAVICHANDRAN G, SUBHASH G. A micromechanical model for high strain rate behavior of ceramics [J]. International Journal of Solids and Structures, 1995, 32(17/18): 2627–2646. doi: 10.1016/0020-7683(94)00286-6
    [25]
    杨圣奇, 徐卫亚, 韦立德, 等. 单轴压缩下岩石损伤统计本构模型与试验研究 [J]. 河海大学学报(自然科学版), 2004, 32(2): 200–203. doi: 10.3321/j.issn:1000-1980.2004.02.019

    YANG Shengqi, XU Weiya, WEI Lide. Statistical constitutive model for rock damage under uniaxial compression and its experimental study [J]. Journal of Hohai University (Natural Sciences), 2004, 32(2): 200–203. doi: 10.3321/j.issn:1000-1980.2004.02.019
    [26]
    李祥龙, 王建国, 张智宇, 等. 应变率及节理倾角对岩石模拟材料动力特性的影响 [J]. 爆炸与冲击, 2016, 36(4): 483–490. DOI: 10.11883/1001-1455(2016)04-0483-08.

    LI Xianglong, WANG Jianguo, ZHANG Zhiyu. Experimental study for effects of strain rates and joint angles on dynamic responses of simulated rock materials [J]. Explosion and Shock Waves, 2016, 36(4): 483–490. DOI: 10.11883/1001-1455(2016)04-0483-08.
  • Relative Articles

    [1]WANG Zhiliang, WANG Dawei, WANG Shumin, WU Xutao. Dynamic behaviors and energy dissipation characteristics of marble under cyclic impact loading[J]. Explosion And Shock Waves, 2024, 44(4): 043104. doi: 10.11883/bzycj-2023-0243
    [2]XU Zehui, HE Tong, DU Guanggang, LIU Lei. Dynamic properties and constitutive model of basalt after high-temperature treatment and water cooling under constant dynamic load[J]. Explosion And Shock Waves, 2023, 43(6): 063101. doi: 10.11883/bzycj-2022-0421
    [3]XI Shangbin, SU Yu. Phase-field simulation of microstructural dynamics in NiTi shape memory alloys and their intrinsic strain rate sensitivities[J]. Explosion And Shock Waves, 2022, 42(9): 091403. doi: 10.11883/bzycj-2021-0461
    [4]XIAO Xiangdong, XIAO Youcai, HONG Zhixiong, XIONG Yanyi, ZHAO Huiping, WANG Zeyu, WANG Zhijun. Study on mechanical properties and damage characteristics of booster explosives under static compression[J]. Explosion And Shock Waves, 2022, 42(4): 042302. doi: 10.11883/bzycj-2021-0257
    [5]ZHOU Lei, JIANG Yacheng, ZHU Zheming, DONG Yuqing, NIU Caoyuan, WANG Meng. Mechanism study of preventing crack propagation of fractured rockunder dynamic loads[J]. Explosion And Shock Waves, 2021, 41(5): 053102. doi: 10.11883/bzycj-2020-0125
    [6]SUN Zhengwei, XU Jinsheng, ZHOU Changsheng, CHEN Xiong, DU Hongying. An improved visco-hyperelastic constitutive behaviour of NEPE propellant at low and high strain rates[J]. Explosion And Shock Waves, 2021, 41(3): 031407. doi: 10.11883/bzycj-2020-0343
    [7]WANG Jianjun, YUAN Kangbo, ZHANG Xiaoqiong, WANG Ruifeng, GAO Meng, GUO Weiguo. Proposition and research progress of the third-type strain aging[J]. Explosion And Shock Waves, 2021, 41(5): 051101. doi: 10.11883/bzycj-2020-0422
    [8]ZHANG Mingtao, WANG Wei, WANG Qizhi, ZHANG Siyi. Dynamic failure process and strain-damage evolution law of sandstone based on SHPB experiments[J]. Explosion And Shock Waves, 2021, 41(9): 093102. doi: 10.11883/bzycj-2020-0288
    [9]CHEN Yang, WU Liang, CHEN Ming, XIANG Xiaorui, YANG Deming. Characteristics of strain rate and strain energy during blasting unloading of high stress rock mass[J]. Explosion And Shock Waves, 2019, 39(10): 103202. doi: 10.11883/bzycj-2018-0225
    [10]XU Lizhi, GAO Guangfa, ZHAO Zhen, WANG Jiangbo, CHENG Chun, DU Zhonghua. Compressive mechanical properties of polyethylene at different strain rates[J]. Explosion And Shock Waves, 2019, 39(1): 013301. doi: 10.11883/bzycj-2017-0266
    [11]JIANG Yaqin, WU Shuaifeng, LIU Dianshu, JIA Bei, WANG Meng, LI Xiaolu. Dynamic damage constitutive model of sandstone based on component combination theory[J]. Explosion And Shock Waves, 2018, 38(4): 827-833. doi: 10.11883/bzycj-2017-0173
    [12]LIU Hongyan, LI Junfeng, PEI Xiaolong. A dynamic damage constitutive model for rockmass with intermittent joints under uniaxial compression[J]. Explosion And Shock Waves, 2018, 38(2): 316-323. doi: 10.11883/bzycj-2016-0261
    [13]Zhang Long-hui, Zhang Xiao-qing, Yao Xiao-hu, Zang Shu-guang. Constitutive model of transparent aviation polyurethane at high strain rates[J]. Explosion And Shock Waves, 2015, 35(1): 51-56. doi: 10.11883/1001-1455(2015)01-0051-06
    [14]Shi Fei-fei, Suo Tao, Hou Bing, Li Yu-long. Strain rate and temperature sensitivity and constitutive model of YB-2 of aeronautical acrylic polymer[J]. Explosion And Shock Waves, 2015, 35(6): 769-776. doi: 10.11883/1001-1455(2015)06-0769-08
    [15]TangTie-gang, LiuCang-li. Ontheconstitutivemodelforoxygen-freehigh-conductivitycopper underhighstrain-ratetension[J]. Explosion And Shock Waves, 2013, 33(6): 581-586. doi: 10.11883/1001-1455(2013)06-0581-06
    [16]Sun Chao-xiang, Ju Yu-tao, Zheng Ya, Wang Peng-bo, Zhang Jun-fa. Mechanical properties of double-base propellant at high strain rates and its damage-modified ZWT constitutive model[J]. Explosion And Shock Waves, 2013, 33(5): 507-512. doi: 10.11883/1001-1455(2013)05-0507-06
    [17]TAO Jun-lin, LI Kui. Athermo-viscoelasticrate-dependentconstitutiveequation forcementmortarwithdamage[J]. Explosion And Shock Waves, 2011, 31(3): 268-273. doi: 10.11883/1001-1455(2011)03-0268-06
    [18]SUN Zi-jian, WANG Li-li. The constitutive behavior of PP/PA polymer blends taking account of damage evolution at high strain rate and large deformation[J]. Explosion And Shock Waves, 2006, 26(6): 492-497. doi: 10.11883/1001-1455(2006)06-0492-06
    [19]WANG Li-li, DONG Xin-long, SUN Zi-jian. Dynamic constitutive behavior of materials at high strain rate taking account of damage evolution[J]. Explosion And Shock Waves, 2006, 26(3): 193-198. doi: 10.11883/1001-1455(2006)03-0193-06
    [20]GUO Wei-guo. Flow stress and constitutive model of OFHC Cu for large deformation, different temperatures and different strain rates[J]. Explosion And Shock Waves, 2005, 25(3): 244-250. doi: 10.11883/1001-1455(2005)03-0244-07
  • Cited by

    Periodical cited type(7)

    1. 杨国梁,尚卓,邹泽华,毕京九,董智文. 冻融循环下砂岩的动态劈裂特性与应变演变机理. 矿业科学学报. 2024(02): 199-208 .
    2. 何荣兴,张智源,张星宇,章雅雯. 诱导下岩体裂隙扩展规律研究存在问题及对策. 中国矿业. 2024(10): 168-176 .
    3. 赵家琛,帅科伟,陈海亮,姚远. 裂隙岩石试样动力学研究进展. 四川建材. 2022(04): 100-101 .
    4. 李盛南,刘新喜,李玉,王玮玮,周炎明. 炭质泥岩渐进破坏过程的变形特性及损伤演化研究. 中国公路学报. 2022(04): 99-107 .
    5. 杨砚,刘连生,曾鹏,易文华,钟抒亮,柴耀光,陶铁军. 不同倾角隐伏结构面类岩石材料动力学破坏特性试验研究. 中南大学学报(自然科学版). 2022(08): 3178-3190 .
    6. 熊绍真,史文兵,王小明. 单轴压缩条件下岩溶化裂隙岩体损伤破坏特征研究. 工程地质学报. 2022(04): 1098-1110 .
    7. 孙富强. 基于CT技术的层状复合岩体损伤演化规律分析. 无损检测. 2021(05): 38-42+48 .

    Other cited types(9)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article Metrics

    Article views (5846) PDF downloads(55) Cited by(16)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return