Volume 39 Issue 8
Aug.  2019
Turn off MathJax
Article Contents
DENG Zhengding, XIANG Shuai, ZHOU Jianrong, WANG Guanshi, WANG Yuemei. Rate correlation and deformation of damage evolutionof non-penetrating fractured rock masses[J]. Explosion And Shock Waves, 2019, 39(8): 083107. doi: 10.11883/bzycj-2018-0391
Citation: DENG Zhengding, XIANG Shuai, ZHOU Jianrong, WANG Guanshi, WANG Yuemei. Rate correlation and deformation of damage evolutionof non-penetrating fractured rock masses[J]. Explosion And Shock Waves, 2019, 39(8): 083107. doi: 10.11883/bzycj-2018-0391

Rate correlation and deformation of damage evolutionof non-penetrating fractured rock masses

doi: 10.11883/bzycj-2018-0391
  • Received Date: 2018-10-12
  • Rev Recd Date: 2019-02-21
  • Publish Date: 2019-08-01
  • The non-penetrating fractured rock mass is the main form of rock mass in nature, and the geometric features of its fractures play a remarkable role in its strength and deformation. Its strain rate also has a significant rate dependence on its damage evolution and viscous effects. Firstly, using the model element method, we treated the dynamic failure process of non-penetrating fractured rock mass as a heterogeneous point with composite damage, static elastic properties and dynamic viscous properties, and improved the Maxwell body that responds to viscoelasticity. Then we combined the meso-damaged body and the macroscopic damage body of fracture damage evolutions into a macro-microscopic composite damage body following the equivalent strain hypothesis and constructed a dynamic damage model considering the macroscopic and microscopic defects of the rock mass. Furthermore, based on the fracture mechanics and strain energy theory, we analyzed the energy mechanism of the macroscopic fracture dynamic expansion of rock mass and obtained the calculation formula of the macroscopic dynamic damage variable of the fractured rock mass, with the initial fracture strain energy, the strain energy of the crack dynamic damage evolution process and the fracture closed strain energy, taken into consideration. Finally, we compared the results from the model calculation with those from experiment and found them in good agreement, thereby proving the rationality of the model. At the same time, we also discussed the influence of fracture inclination, strain rate and rock properties on rock mass deformation characteristics using the model.
  • loading
  • [1]
    刘学伟, 刘泉声, 陈元, 等. 裂隙形式对岩体强度特征及破坏模式影响的试验研究 [J]. 岩土力学, 2015, 36(S2): 208–214.

    LIU Xuewei, LIU Quansheng, CHEN Yuan, et al. Experimental study of effects of fracture type on strength characteristics and failure modes of fractured rock mass [J]. Rock and Soil Mechanics, 2015, 36(S2): 208–214.
    [2]
    宫凤强, 王进, 李夕兵. 岩石压缩特性的率效应与动态增强因子统一模型 [J]. 岩石力学与工程学报, 2018, 37(7): 1586–1595.

    GONG Fengqiang, WANG Jin, LI Xibing. The rate effect of compression characteristics and a unified model of dynamic increasing factor for rock materials [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(7): 1586–1595.
    [3]
    张平, 李宁, 李贺兰. 动载下两条断续预制裂隙贯通机制研究 [J]. 岩石力学与工程学报, 2006, 25(6): 1210–1217. doi: 10.3321/j.issn:1000-6915.2006.06.019

    ZHANG Ping, LI Ning, LI Helan. Mechanism of fracture coalescence between two pre-existing flaws under dynamic loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(6): 1210–1217. doi: 10.3321/j.issn:1000-6915.2006.06.019
    [4]
    刘红岩, 邓正定, 王新生, 等. 节理岩体动态破坏的SHPB相似材料试验研究 [J]. 岩土力学, 2013, 35(3): 659–665.

    LIU Hongyan, DENG Zhengding, WANG Xinsheng. Similar material test study of dynamic failure of jointed rock mass with SHPB [J]. Rock and Soil Mechanics, 2013, 35(3): 659–665.
    [5]
    李地元, 韩震宇, 孙小磊, 等. 含预制裂隙大理岩SHPB动态力学破坏特性试验研究 [J]. 岩石力学与工程学报, 2017, 36(12): 2872–2883.

    LI Diyuan, HAN Zhenyu, SUN Xiaolei, et al. Characteristics of dynamic failure of marble with artificial flaws under split Hopkinson pressure bar tests [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12): 2872–2883.
    [6]
    李夕兵, 王卫华, 马春德. 不同频率载荷作用下的岩石节理本构模型 [J]. 岩石力学与工程学报, 2007, 26(2): 247–253. doi: 10.3321/j.issn:1000-6915.2007.02.004

    LI Xibing, WANG Weihua, MA Chunde. Constitutive model of rock joints under compression loads with different frequencies [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(2): 247–253. doi: 10.3321/j.issn:1000-6915.2007.02.004
    [7]
    张力民, 吕淑然, 刘红岩. 综合考虑宏细观缺陷的岩体动态损伤本构模型 [J]. 爆炸与冲击, 2015, 35(3): 428–436. DOI: 10.11883/1001-1455-(2015)03-0428-09.

    ZHANG Limin, LU Shuran, LIU Hongyan. A dynamic damage constitutive model of rock mass by comprehensively considering macroscopic and mesoscopic flaws [J]. Explosion and Shock Waves, 2015, 35(3): 428–436. DOI: 10.11883/1001-1455-(2015)03-0428-09.
    [8]
    刘红岩, 王新生, 张力民, 等. 非贯通节理岩体单轴压缩动态损伤本构模型 [J]. 岩土工程学报, 2016, 38(3): 426–436. doi: 10.11779/CJGE201603001

    LIU Hongyan, WANG Xinsheng, ZAHNG Limin. A dynamic damage constitutive model for rock mass with non-persistent joints under uniaxial compression [J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 426–436. doi: 10.11779/CJGE201603001
    [9]
    李杰, 王明洋, 张宁, 等. 裂隙岩体动态损伤演化与体积扩容方程 [J]. 岩石力学与工程学报, 2015, 34(8): 1532–1541.

    LI Jie, WANG Mingyang, ZHANG Ning. An equation for damage development and volumetric dilation of cracked rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(8): 1532–1541.
    [10]
    袁小清, 刘红岩, 刘京平. 基于宏细观损伤耦合的非贯通裂隙岩体本构模型 [J]. 岩土力学, 2015, 36(10): 2804–2814.

    YUAN Xiaoqing, LIU Hongyan, LIU Jingping. Constitutive model of rock mass with non-persistent joints based on coupling macroscopic and mesoscopic damages [J]. Rock and Soil Mechanics, 2015, 36(10): 2804–2814.
    [11]
    王佩新, 曹平, 蒲成志, 等. 单压下节理密度及倾角对类岩石试件强度及变形的影响 [J]. 工程科学学报, 2017, 39(4): 494–501.

    WANG Peixin, CAO Ping, PU Chengzhi, et al. Effect of the density and inclination of joints on the strength and deformation properties of rock-like specimens under uniaxial compression [J]. Chinese Journal of Engineering, 2017, 39(4): 494–501.
    [12]
    FAN X, KULATILAKE P H S W, CHEN X, et al. Crack initiation stress and strain of jointed rock containing multi-cracks under uniaxial compressive loading: a particle flow code approach [J]. Journal of Central South University, 2015, 22(2): 638–645. doi: 10.1007/s11771-015-2565-z
    [13]
    ASHBY M F, SAMMIS C G. The damage mechanics of brittle solids in compression [J]. Pure and Applied Geophysics, 1990, 133(3): 489–521. doi: 10.1007/BF00878002
    [14]
    LEE S, RAVICHANDRAN G. Crack initiation in brittle solids under multiaxial compression [J]. Engineering Fracture Mechanics, 2003, 70(13): 1645–1658. doi: 10.1016/S0013-7944(02)00203-5
    [15]
    李世愚, 和泰名, 尹祥础. 岩石断裂力学 [M]. 北京: 科学出版社, 2015.
    [16]
    孙广忠, 孙毅. 岩体力学原理 [M]. 北京: 科学出版社, 2011.
    [17]
    ROSE L R F. Recent theoretical and experimental results on fast brittle fracture [J]. International Journal of Fracture, 1976, 12(6): 799–813.
    [18]
    FREUND L B, HUTCHINSON J W. Dynamic fracture mechanic [M]. Hemisphere Pub Corp, 1990.
    [19]
    DENG H, NEMAT-NASSER S. Dynamic damage evolution in brittle solids [J]. Mechanics of Materials, 1992, 14(2): 83–103. doi: 10.1016/0167-6636(92)90008-2
    [20]
    宁建国, 任会兰, 方敏杰. 基于椭圆形微裂纹演化与汇合的准脆性材料本构模型 [J]. 科学通报, 2012(21): 1978–1986.

    NING J G, REN H L, FANG M J. A constitutive model based on the evolution and coalescence of elliptical micro-cracks for quasi-brittle materials [J]. Chinese Science Bulletin, 2012(21): 1978–1986.
    [21]
    潘红宇, 葛迪, 张天军, 等. 应变率对岩石裂隙扩展规律的影响 [J]. 煤炭学报, 2018, 43(3): 675–683.

    PAN Hongyu, GE Di, ZHANG Tianjun, et al. Influence of strain rate on the rock fracture propagation law [J]. Journal of China Coal Society, 2018, 43(3): 675–683.
    [22]
    王卫华, 李坤, 王小金, 等. SHPB加载下含不同倾角裂隙的类岩石试样力学特性 [J]. 科技导报, 2016, 34(18): 246–250.

    WANG Weihua, LI Kun, WANG Xiaojin, et al. Experimental study of mechanical properties of rocklike specimens containing single cracks of different inclination angles under SHPB loading [J]. Science and Technology Review, 2016, 34(18): 246–250.
    [23]
    王卫华, 王小金, 姜海涛. 单轴压缩作用下含不同倾角裂隙的类岩石试样力学特性 [J]. 科技导报, 2014, 32(28/29): 48–53.

    WANG Weihua, WANG Xiaojin, JIANG Haitao. Experimental research on mechanical properties of rocklike specimens containing single cracks of different inclination angles under uniaxial compression [J]. Science and Technology Review, 2014, 32(28/29): 48–53.
    [24]
    RAVICHANDRAN G, SUBHASH G. A micromechanical model for high strain rate behavior of ceramics [J]. International Journal of Solids and Structures, 1995, 32(17/18): 2627–2646. doi: 10.1016/0020-7683(94)00286-6
    [25]
    杨圣奇, 徐卫亚, 韦立德, 等. 单轴压缩下岩石损伤统计本构模型与试验研究 [J]. 河海大学学报(自然科学版), 2004, 32(2): 200–203. doi: 10.3321/j.issn:1000-1980.2004.02.019

    YANG Shengqi, XU Weiya, WEI Lide. Statistical constitutive model for rock damage under uniaxial compression and its experimental study [J]. Journal of Hohai University (Natural Sciences), 2004, 32(2): 200–203. doi: 10.3321/j.issn:1000-1980.2004.02.019
    [26]
    李祥龙, 王建国, 张智宇, 等. 应变率及节理倾角对岩石模拟材料动力特性的影响 [J]. 爆炸与冲击, 2016, 36(4): 483–490. DOI: 10.11883/1001-1455(2016)04-0483-08.

    LI Xianglong, WANG Jianguo, ZHANG Zhiyu. Experimental study for effects of strain rates and joint angles on dynamic responses of simulated rock materials [J]. Explosion and Shock Waves, 2016, 36(4): 483–490. DOI: 10.11883/1001-1455(2016)04-0483-08.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article Metrics

    Article views (5809) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return