Citation: | YAN Weiyang, PAN Xuhai, WANG Zhilei, HUA Min, JIANG Yiming, WANG Qingyuan, JIANG Juncheng. Experimental investigation on spontaneous combustion of high-pressure hydrogen leakage to form jet fire[J]. Explosion And Shock Waves, 2019, 39(11): 115402. doi: 10.11883/bzycj-2018-0394 |
[1] |
NICOLETTI G, ARCURI N, NICOLETTI G, et al. A technical and environmental comparison between hydrogen and some fossil fuels [J]. Energy Conversion and Management, 2015, 89(89): 205–213.
|
[2] |
ONO R, ODA T. Spark ignition of hydrogen-air mixture [C] // 2008: 012003. DOI: https://doi.org/10.1088/1742-6596/142/1/012003.
|
[3] |
XU B P, WEN J X, DEMBELE S, et al. The effect of pressure boundary rupture rate on spontaneous ignition of pressurized hydrogen release [J]. Journal of Loss Prevention in the Process Industries, 2009, 22(3): 279–287. DOI: 10.1016/j.jlp.2008.07.007.
|
[4] |
WOLINSKI M, WOIANSKI P. Investigation into the mechanism of the diffusion ignition of a combustible gas flowing into an oxidizing atmosphere [C] // Proceedings of the 14th symposium on combustion, 1973: 1217−1223.
|
[5] |
FREDERICK L D, MARCOS C, ZHENWEI Z, et al. Spontaneous ignition of pressurized releases of hydrogen and natural gas into air [J]. Combustion Science and Technology, 2007, 179(4): 663–694.
|
[6] |
MOGI T, WADA Y, OGATA Y, et al. Self-ignition and flame propagation of high-pressure hydrogen jet during sudden discharge from a pipe [J]. International Journal of Hydrogen Energy, 2009, 34(14): 5810–5816. DOI: 10.1016/j.ijhydene.2009.04.079.
|
[7] |
MOGI T, KIM D, SHIINA H, et al. Self-ignition and explosion during discharge of high-pressure hydrogen [J]. Journal of Loss Prevention in the Process Industries, 2008, 21(2): 199–204. DOI: 10.1016/j.jlp.2007.06.008.
|
[8] |
LEE H J, KIM Y R, KIM S H, et al. Experimental investigation on the self-ignition of pressurized hydrogen released by the failure of a rupture disk through tubes [J]. Proceedings of the Combustion Institute, 2011, 33(2): 2351–2358. DOI: 10.1016/j.proci.2010.06.040.
|
[9] |
KITABAYASHI N, WADA Y, MOGI T, et al. Experimental study on high pressure hydrogen jets coming out of tubes of 0.1-4.2 m in length [J]. International Journal of Hydrogen Energy, 2013, 38(19): 8100–8107. DOI: 10.1016/j.ijhydene.2012.10.040.
|
[10] |
段强领. 高压氢气泄漏自燃机理及其火焰传播特性实验研究[D]. 合肥: 中国科学技术大学, 2016.
DUAN Qiangling. Experimental study of spontaneous ignition and subsequent flame propagation of high-pressure hydrogen release [D]. Heifei: University of Science and Technology of China, 2016.
|
[11] |
GOLUB V V, BAKLANOV D I, BAZHENOVA T V, et al. Shock-induced ignition of hydrogen gas during accidental or technical opening of high-pressure tanks [J]. Journal of Loss Prevention in the Process Industries, 2007, 20(4): 439–446.
|
[12] |
GOLUB V V, BAKLANOV D I, GOLOVASTOV S V, et al. Mechanisms of high-pressure hydrogen gas self-ignition in tubes [J]. Journal of Loss Prevention in the Process Industries, 2008, 21(2): 185–198. DOI: 10.1016/j.jlp.2007.06.012.
|
[13] |
KIM Y R, LEE H J, KIM S, et al. A flow visualization study on self-ignition of high pressure hydrogen gas released into a tube [J]. Proceedings of the Combustion Institute, 2013, 34(2): 2057–2064. DOI: 10.1016/j.proci.2012.07.020.
|
[14] |
GRUNE J, SEMPERT K, KUZNETSOV M, et al. Experimental investigation of flame and pressure dynamics after spontaneous ignition in tube geometry [J]. International Journal of Hydrogen Energy, 2014, 39(35): 20396–20403. DOI: 10.1016/j.ijhydene.2014.05.046.
|
[15] |
KANEKO W, SHII K. Effects of diaphragm rupturing conditions on self-ignition of high-pressure hydrogen [J]. International Journal of Hydrogen Energy, 2016, 41(25): 10969–10975. DOI: 10.1016/j.ijhydene.2016.04.211.
|
[16] |
KANEKO W, ISHII K. An experimental study on the mechanism of self-ignition of high-pressure hydrogen [J]. International Journal of Hydrogen Energy, 2017, 42(11): 7374–7379. DOI: 10.1016/j.ijhydene.2016.06.046.
|
[17] |
XU B P, WEN J X. Numerical study of spontaneous ignition in pressurized hydrogen release through a length of tube with local contraction [J]. International Journal of Hydrogen Energy, 2012, 37(22): 17571–17579. DOI: 10.1016/j.ijhydene.2012.04.150.
|
[18] |
陈强. 激波管流动的理论和实验技术[D]. 合肥: 中国科学技术大学, 1979.
CHEN Qiangling. Theory and experimental techniques of shock tube flows [D]. Heifei: University of Science and Technology of China, 1979.
|
[19] |
SPENCE D A, WOODS B A. A review of theoretical treatments of shock-tube attenuation [J]. Journal of Fluid Mechanics, 2006, 19(2): 161–174.
|
[20] |
LEE B J, JEUNG I S. Numerical study of spontaneous ignition of pressurized hydrogen released by the failure of a rupture disk into a tube [J]. International Journal of Hydrogen Energy, 2009, 34(20): 8763–8769. DOI: 10.1016/j.ijhydene.2009.08.034.
|
[21] |
SHEN X, SUN J. Numerical simulation on the spontaneous ignition of leaking high pressure hydrogen from terminal unit [J]. Physics Procedia, 2012, 33(6): 1833–1841.
|
[22] |
STUDER E, JAMOIS D, JALLAIS S, et al. Properties of large-scale methane/hydrogen jet fires [J]. International Journal of Hydrogen Energy, 2009, 34(23): 9611–9619. DOI: 10.1016/j.ijhydene.2009.09.024.
|
[1] | ZHENG Chun, HE Yong, ZHANG Huanhao, CHEN Zhihua. On the evolution mechanism of the shock-accelerated annular SF6 cylinder[J]. Explosion And Shock Waves, 2023, 43(1): 013201. doi: 10.11883/bzycj-2022-0226 |
[2] | BAO Lei, WANG Peng,, DANG Qian, LI Houda, KUANG Chen, YU Anfeng. Experimental study on detonation propagation in industrial scale pipelines used in petrochemical plants[J]. Explosion And Shock Waves, 2021, 41(9): 095401. doi: 10.11883/bzycj-2020-0295 |
[3] | JIA Leiming, TIAN Zhou. On the theoretical calculation method for interaction between the vertical plane shock wave and the horizontal thermal layer[J]. Explosion And Shock Waves, 2019, 39(12): 122202. doi: 10.11883/bzycj-2018-0510 |
[4] | JIANG Nan, Bi Yixing, LÜ Dong, WANG Lu, MU Yangyang. Explosion overpressure of hydrogen cloud in catalytic reforming process[J]. Explosion And Shock Waves, 2019, 39(2): 025403. doi: 10.11883/bzycj-2017-0371 |
[5] | ZHU Xiaochao, ZHENG Ligang, YU Shuijun, WANG Yalei, LI Gang, DU Depeng, DOU Zengguo. Effect of blocking ratio on aluminum powder explosion’s characteristicsin vertical duct[J]. Explosion And Shock Waves, 2019, 39(10): 105402. doi: 10.11883/bzycj-2019-0006 |
[6] | LIU Jian, YAO Jian, SONG Shuzhong, LI Bin, XIE Lifeng, WANG Yongxu. Experimental study on cook-off performance of diesel fuel[J]. Explosion And Shock Waves, 2018, 38(3): 534-540. doi: 10.11883/bzycj-2016-0291 |
[7] | Zhu Yuejin, Yu Lei, Zhang Penggang, Pan Zhenhua, Pan Jianfeng, Dong Gang. Conditions for shock wave induced flame instability and detonation[J]. Explosion And Shock Waves, 2017, 37(4): 741-747. doi: 10.11883/1001-1455(2017)04-0741-07 |
[8] | Chen Xiao, Dong Gang, Jiang Hua, Wu Jintao. Numerical studies of sinusoidally premixed flame interface instability induced by multiple shock waves[J]. Explosion And Shock Waves, 2017, 37(2): 229-236. doi: 10.11883/1001-1455(2017)02-0229-08 |
[9] | Wang Chao, Wu Yu, Shi Honghui, Xiao Yi. Breakup process of a droplet under the impact of a shock wave[J]. Explosion And Shock Waves, 2016, 36(1): 129-134. doi: 10.11883/1001-1455(2016)01-0129-06 |
[10] | Zheng Chun, Chen Zhihua, Zhang Huanhao, Sun Xiaohui. Numerical investigations on propagating characteristics of shock waves in different triangle wedges[J]. Explosion And Shock Waves, 2016, 36(3): 379-385. doi: 10.11883/1001-1455(2016)03-0379-07 |
[11] | Cao Yong, Guo Jin, Hu Kunlun, Shao Ke, Yang Fan. Effect of ignition locations on vented explosion of premixed hydrogen-air mixtures[J]. Explosion And Shock Waves, 2016, 36(6): 847-852. doi: 10.11883/1001-1455(2016)06-0847-06 |
[12] | Xu Han, Yao Chunde, Yao Anren. Effect of different auto-ignition modeson the formation of pressure waves[J]. Explosion And Shock Waves, 2016, 36(3): 407-415. doi: 10.11883/1001-1455(2016)03-0407-09 |
[13] | Cheng Guan-bing, Li Jun-xian, Li Shu-ming, Qu Hong-chun. An experimental study on detonation characteristics of binary fuels hydrogen/propane-air mixtures[J]. Explosion And Shock Waves, 2015, 35(2): 249-254. doi: 10.11883/1001-1455(2015)02-0249-06 |
[14] | Zhu Yue-jin, Dong Gang. A study of vorticity characteristics of shock-flame interaction[J]. Explosion And Shock Waves, 2015, 35(6): 839-845. doi: 10.11883/1001-1455(2015)06-0839-07 |
[15] | Guo Pan, Wu Wen-hua, Liu Jun, Wu Zhi-gang. Numerical simulation of fluid-structure interaction in defect-contained charge of solid rocket motor subjected to shock waves[J]. Explosion And Shock Waves, 2014, 34(1): 93-98. |
[16] | Bao Xiu-chao, Liu Fu-shui, Chen Chao. Experimental study on hydrogen constant volume combustion[J]. Explosion And Shock Waves, 2014, 34(5): 580-585. doi: 10.11883/1001-1455(2014)05-0580-06 |
[17] | Jiang Yao-gang, Ma Hong-hao, Shen Zhao-wu, Cheng Yang-fan, Fan Zhi-qiang, Wang Quan. Influences of shock wave in cold shock wave extinguishing system on fire extinguishing effect and surrounding environment[J]. Explosion And Shock Waves, 2013, 33(1): 67-72. doi: 10.11883/1001-1455(2013)01-0067-06 |
[18] | Zhu Yue-jin, Dong Gang, Liu Yi-xin, Fan Bao-chun, Jiang Hua. A numerical study on shock induced distortion, mixing and combustion of flame[J]. Explosion And Shock Waves, 2013, 33(4): 430-437. doi: 10.11883/1001-1455(2013)04-0430-08 |
[19] | GUI Ming-yue, FAN Bao-chun, YU Lu-jun, JIANG Xiao-hai, DONG Gang. Numerical investigations on interaction of implosion flame with shock[J]. Explosion And Shock Waves, 2007, 27(3): 204-209. doi: 10.11883/1001-1455(2007)03-0204-06 |
[20] | LIN Ying-song, ZHU Tian-yu, JANG Jin-bao, YUAN Xin-fang, LI De-cong, DING Yan-sheng. Numerical simulation analysis of effect on the cement sample by blast wave in the water[J]. Explosion And Shock Waves, 2006, 26(5): 462-467. doi: 10.11883/1001-1455(2006)05-0462-06 |
1. | 谢乐源,杨孟飞,吴宗义,彭燕,高懿真. 基于情景模拟的加氢站泄漏事故演变分析. 化工安全与环境. 2024(01): 16-22 . ![]() | |
2. | 马梦飞,於星,张爱凤,张佳庆,祝现礼,王昌建. 开放空间高压氢气射流中点火爆炸的实验研究. 爆炸与冲击. 2024(06): 18-27 . ![]() | |
3. | Wenkang Zhang,Guanghui Zhao. Leakage and diffusion characteristics of underground hydrogen pipeline. Petroleum. 2024(02): 319-325 . ![]() | |
4. | 武子超,汪志雷,李荣业,李可昕,华敏,潘旭海,王三明,蒋军成. 点火方式对欠膨胀氢气射流爆炸超压影响规律研究. 化工学报. 2023(03): 1409-1418+974 . ![]() | |
5. | 张慧敏,田磊,孙云峰,杨文,彭世垚,刘翠伟,艾丽纳,李玉星. 有机液体储氢研究进展及管道运输的思考. 油气储运. 2023(04): 375-390 . ![]() | |
6. | 汪宗成,李权,王昌建. 泄漏压力对阀门高压氢气自燃影响的数值模拟. 消防科学与技术. 2023(09): 1174-1179 . ![]() | |
7. | 孙坤龙,张艳军,孟明明,余成爽,王瑜,何渝泉. 氢气爆炸冲击波作用下环境舱结构变形过程数值模拟研究. 中国设备工程. 2022(11): 80-81 . ![]() | |
8. | 陆剑心,张英,马出原,邓康,雷春英. 水凝胶对磷酸铁锂电池灭火实验性能. 储能科学与技术. 2022(08): 2637-2644 . ![]() | |
9. | 徐婷婷,朱国庆,陈凡宝. 管道内径与壁温对高压氢气自发点火的数值研究. 消防科学与技术. 2022(09): 1173-1177 . ![]() | |
10. | 沈晓波,章雪凝,刘海峰. 高压氢气泄漏相关安全问题研究与进展. 化工学报. 2021(03): 1217-1229 . ![]() | |
11. | 邝辰,刘迪,杨昊,于安峰,党文义. 氢气泄漏后燃爆风险研究现状综述. 安全、健康和环境. 2021(09): 1-5 . ![]() | |
12. | 钱松. 加氢站风险分析. 电气防爆. 2021(05): 5-8 . ![]() | |
13. | 陈庆,魏旭,陈光,徐亮,陈鹏,刘洋. 受限空间射流火形成和发展影响因素研究. 中国安全科学学报. 2020(07): 35-40 . ![]() |