Volume 39 Issue 11
Nov.  2019
Turn off MathJax
Article Contents
PENG Yong, LU Fangyun, FANG Qin, WU Hao, LI Xiangyu. Analyses of the size effect for projectile penetrations into concrete targets[J]. Explosion And Shock Waves, 2019, 39(11): 113301. doi: 10.11883/bzycj-2018-0402
Citation: PENG Yong, LU Fangyun, FANG Qin, WU Hao, LI Xiangyu. Analyses of the size effect for projectile penetrations into concrete targets[J]. Explosion And Shock Waves, 2019, 39(11): 113301. doi: 10.11883/bzycj-2018-0402

Analyses of the size effect for projectile penetrations into concrete targets

doi: 10.11883/bzycj-2018-0402
  • Received Date: 2018-10-18
  • Rev Recd Date: 2019-01-30
  • Available Online: 2019-10-25
  • Publish Date: 2019-11-01
  • Whether the replica scaling law holds or not is of great significance because penetration tests of concrete targets against rigid projectiles are commonly conducted in a reduced scale. In this paper, based on the replica scaling model and the analyses of penetration tests with various sizes and empirical formulae, we found that there exists a size effect in general for penetration depth, and the dimensionless depth increases with as does the size. However, the replica scaling law is satisfied for the penetration depth in rigid projectile penetrations, as long as the scaling is done strictly for both projectiles and concrete targets, including the coarse aggregates. We also found that the coarse aggregates of an invariant size (not replica-scaled) are the major factor accounting for the size effect in penetration depth found in tests and empirical formulae. To find out about the size effect resulting from aggregates, we developed a 2D mesoscopic finite element model for concrete target and conducted numerical simulations that successfully represent the size effect, thereby proving that penetration formula with size effect considered could well predict the penetration tests with different size.
  • loading
  • [1]
    FORRESTAL M J, TZOU D Y. A spherical cavity-expansion penetration model for concrete targets [J]. International Journal of Solids and Structures, 1997, 34(31/32): 4127–4146. DOI: 10.1016/S0020-7683(97)00017-6.
    [2]
    吴昊, 方秦, 龚自明. 考虑刚性弹弹头形状的混凝土(岩石)靶体侵彻深度半理论分析 [J]. 爆炸与冲击, 2012, 32(6): 573–580. DOI: 10.11883/1001-1455(2012)06-0573-08.

    WU Hao, FANG Qin, GONG Ziming. Semi-theoretical analyses for penetration depth of rigid projectiles with different nose geometries into concrete (rock) targets [J]. Explosion and Shock Waves, 2012, 32(6): 573–580. DOI: 10.11883/1001-1455(2012)06-0573-08.
    [3]
    FENG J, LI W B, WANG X M, et al. Dynamic spherical cavity expansion analysis of rate-dependent concrete material with scale effect [J]. International Journal of Impact Engineering, 2015, 84: 24–37. DOI: 10.1016/j.ijimpeng.2015.05.005.
    [4]
    KONG X Z, WU H, FANG Q, et al. Rigid and eroding projectile penetration into concrete targets based on an extended dynamic cavity expansion model [J]. International Journal of Impact Engineering, 2017, 100: 13–22. DOI: 10.1016/j.ijimpeng.2016.10.005.
    [5]
    KONG X Z, FANG Q, WU H, et al. Numerical predictions of cratering and scabbing in concrete slabs subjected to projectile impact using a modified version of HJC material model [J]. International Journal of Impact Engineering, 2016, 95: 61–71. DOI: 10.1016/j.ijimpeng.2016.04.014.
    [6]
    LI Q M, REID S R, WEN H M, et al. Local impact effects of hard missiles on concrete targets [J]. International Journal of Impact Engineering, 2005, 32(1): 224–284.
    [7]
    FORRESTAL M J, ALTMAN B S, CARGILE J D. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. DOI: 10.1016/0734-743X(94)80024-4.
    [8]
    FREW D J, HANCHAK S J, GREEN M L, et al. Penetration of concrete targets with ogive-nose steel rods [J]. International Journal of Impact Engineering, 1998, 21(6): 489–497. DOI: 10.1016/S0734-743X(98)00008-6.
    [9]
    周宁, 任辉启, 沈兆武, 等. 弹丸侵彻混凝土和钢筋混凝土的试验 [J]. 中国科学技术大学学报, 2016, 36(10): 1021–1027.

    ZHOU Ning, REN Huiqi, SHEN Zhaowu, et al. Experimental on the projectile penetration concrete targets and reinforced concrete targets [J]. Journal of University of Science and Technology of China, 2016, 36(10): 1021–1027.
    [10]
    LI Q M, CHEN X W. Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile [J]. International Journal of Impact Engineering, 2003, 28(1): 93–116. DOI: 10.1016/S0734-743X(02)00037-4.
    [11]
    PENG Y, WU H, FANG Q, et al. A note on the deep penetration and perforation of hard projectiles into thick targets [J]. International Journal of Impact Engineering, 2015, 85: 37–44. DOI: 10.1016/j.ijimpeng.2015.06.013.
    [12]
    徐建波. 长杆射弹对混凝土的侵彻特性研究[D]. 长沙: 国防科学技术大学, 2001: 79−84.
    [13]
    许三罗, 相恒波. 射弹侵彻混凝土中相似理论的应用及误差分析 [J]. 弹箭与制导学报, 2007, 27(3): 123–126. DOI: 10.3969/j.issn.1673-9728.2007.03.037.

    XU Sanluo, XIANG Hengbo. Similarity theory applied in projectile penetrating into concrete target and deflection analysis [J]. Journal of Projectile, Rocket, Missiles and Guidance, 2007, 27(3): 123–126. DOI: 10.3969/j.issn.1673-9728.2007.03.037.
    [14]
    卢江仁, 孟会林, 孙新利. 动能弹垂直侵彻混凝土相似律的数值模拟研究 [J]. 弹箭与制导学报, 2007, 27(4): 145–147. DOI: 10.3969/j.issn.1673-9728.2007.04.043.

    LU Jiangren, MENG Huilin, SUN Xinli. Numerical simulation of the analogue rules of the kinetic energy projectile vertically penetrating concrete target [J]. Journal of Projectile, Rocket, Missiles and Guidance, 2007, 27(4): 145–147. DOI: 10.3969/j.issn.1673-9728.2007.04.043.
    [15]
    高光发, 李永池, 罗春涛, 等. 混凝土靶高速侵彻的率相关相似律研究 [J]. 弹箭与制导学报, 2011, 31(3): 98–100. DOI: 10.3969/j.issn.1673-9728.2011.03.028.

    GAO Guangfa, LI Yongchi, LUO Chuntao, et al. The study on rate-dependent similarity law of high velocity penetration into concrete target [J]. Journal of Projectile, Rocket, Missiles and Guidance, 2011, 31(3): 98–100. DOI: 10.3969/j.issn.1673-9728.2011.03.028.
    [16]
    FORRESTAL M J, FREW D J, HICKERSON J P, et al. Penetration of concrete targets with deceleration-time measurements [J]. International Journal of Impact Engineering, 2003, 28(5): 479–497. DOI: 10.1016/S0734-743X(02)00108-2.
    [17]
    GOMEZ J T, SHUKLA A. Multiple impact penetration of semi-infinite concrete [J]. International Journal of Impact Engineering, 2001, 25(10): 965–979. DOI: 10.1016/S0734-743X(01)00029-X.
    [18]
    HANCHAK S J, FORRESTAL M J, YOUNG E R, et al. Perforation of concrete slab with 48MPa (7ksi) and 140MPa (20ksi) unconfined compressive strength [J]. International Journal of Impact Engineering, 1992, 12(1): 1–7. DOI: 10.1016/0734-743X(92)90282-X.
    [19]
    FORRESTAL M J, FREW D J, HANCHAK S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1996, 18(5): 465–476. DOI: 10.1016/0734-743X(95)00048-F.
    [20]
    ACE Fundamentals of protective structures[R]. Army Corps of Engineers, Office of the Chief of Engineers, 1946.
    [21]
    Effects of impact and explosion[R]. Washington D C: National Defense Research Committee, 1946.
    [22]
    TELAND J A, SJØL H. An examination and reinterpretion of experimental data behind various empirical equations for penetration into concrete[C] //Proceedings of the 9th International Symposium Interaction of the Effects of Munitions with Structures, 1999.
    [23]
    BLUDAU C, KEUSER M, KUSTERMANN A. Perforation resistance of high-strength concrete panels [J]. ACI Structural Journal, 2006, 103(2): 188–195.
    [24]
    ZHANG M H, SHIM V P W, LU G, et al. Resistance of high-strength concrete to projectile impact [J]. International Journal of Impact Engineering, 2005, 31(7): 825–841. DOI: 10.1016/j.ijimpeng.2004.04.009.
    [25]
    CANFIELD J A, CLATOR I G. Development of a scaling law and techniques to investigate penetration in concrete: 2057 [R] Dahlgren: Naval Weapons Laboratory, 1966.
    [26]
    MANUAL L S D K U, Volume I. Version 971 [M]. Livermore Software Technology Corporation, 2007: 500−600.
    [27]
    HOLMQUIST T J, JOHNSON G R, Cook W H. A computational constitutive model for concrete subjective to large strain, high strain rates, and high pressure[C] // Proceedings of the 14th International Symposium on Ballistic. Canada, Quebec City, 1993: 591−600.
    [28]
    彭永. 单(多)层混凝土靶板抗弹体侵彻/贯穿研究[D]. 南京: 解放军理工大学, 2014: 84−87.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (6504) PDF downloads(131) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return