CHANG Baixue, ZHENG Zhijun, ZHAO Kai, HE Siyuan, YU Jilin. Design of gradient foam metal materials with a constant impact load[J]. Explosion And Shock Waves, 2019, 39(4): 041101. doi: 10.11883/bzycj-2018-0431
Citation: CHANG Baixue, ZHENG Zhijun, ZHAO Kai, HE Siyuan, YU Jilin. Design of gradient foam metal materials with a constant impact load[J]. Explosion And Shock Waves, 2019, 39(4): 041101. doi: 10.11883/bzycj-2018-0431

Design of gradient foam metal materials with a constant impact load

doi: 10.11883/bzycj-2018-0431
  • Received Date: 2018-10-31
  • Rev Recd Date: 2018-12-07
  • Available Online: 2019-04-25
  • Publish Date: 2019-04-01
  • Cellular materials can absorb a large amount of impact energy with large deformation, and their crashworthiness may be improved by introducing density gradients. The macroscopic mechanical responses of graded cellular materials are very sensitive to their relative density distributions and the effects of meso-structures can be very different. Some of existing studies is mainly limited to the analysis on the dynamic mechanical response of graded cellular material with a given density gradient, and less on the crashworthiness design method is considered. Based on the nonlinear plastic shock wave model, a backward crashworthiness design method is developed for graded foams. A simplified model and an asymptotic solution are derived by applying the series method with the aim of maintaining a constant load on the impact object. The cell-based finite element models based on three-dimensional Voronoi structures with density continuously changing are constructed by applying the variable cell size method. The theoretical design is verified by using finite element software ABAQUS/Explicit. The numerical simulation results show that the asymptotic solution of the simplified model is effective for the crashworthiness design of graded foams, and the proposed crashworthiness design method is of instructive significance in controlling the energy absorption and impact process.
  • [1]
    REID S R, PENG C. Dynamic uniaxial crushing of wood [J]. International Journal of Impact Engineering, 1997, 19(5−6): 531–570. DOI: 10.1016/s0734-743x(97)00016-x.
    [2]
    华云龙, 余同希. 多胞材料的力学行为 [J]. 力学进展, 1990, 21(4): 457–469. DOI: 10.6052/1000-0992-1991-4-J1991-052

    HUA Yunlong, YU Tongxi. Mechanical behavior of cellular solids [J]. Advances in Mechanics, 1990, 21(4): 457–469. DOI: 10.6052/1000-0992-1991-4-J1991-052
    [3]
    ELNASRI I, PATTOFATTO S, ZHAO H, et al. Shock enhancement of cellular structures under impact loading: part Ⅰ experiments [J]. Journal of the Mechanics and Physics of Solids, 2007, 55(12): 2652–2671. DOI: 10.1016/j.jmps.2007.04.005.
    [4]
    GIBSON L J, ASHBY M F. Cellular solids: structure and properties [M]. Cambridge: Cambridge University Press, 1999.
    [5]
    CUI L, KIERNAN S, GILCHRIST M D. Designing the energy absorption capacity of functionally graded foam materials [J]. Materials Science and Engineering: A, 2009, 507(1): 215–225. DOI: 10.1016/j.msea.2008.12.011.
    [6]
    WANG X K, ZHENG Z J, YU J L, et al. Impact resistance and energy absorption of functionally graded cellular structures [J]. Applied Mechanics and Materials, 2011, 69: 73−78. DOI: 10.4028/www.scientific.net/AMM.69.73.
    [7]
    WANG X K, ZHENG Z J, YU J L. Crashworthiness design of density-graded cellular metals [J]. Theoretical and Applied Mechanics Letters, 2013, 3(3): 031001. DOI: 10.1063/2.1303101.
    [8]
    SHEN C J, YU T X, LU G X. Double shock mode in graded cellular rod under impact [J]. International Journal of Solids and Structures, 2013, 50(1): 217–233. DOI: 10.1016/j.ijsolstr.2012.09.021.
    [9]
    ZHENG J, QIN Q, WANG T J. Impact plastic crushing and design of density-graded cellular materials [J]. Mechanics of Materials, 2016, 94: 66–78. DOI: 10.1016/j.mechmat.2015.11.014.
    [10]
    SHEN C J, LU G X, YU T X. Investigation into the behavior of a graded cellular rod under impact [J]. International Journal of Impact Engineering, 2014, 74: 92–106. DOI: 10.1016/j.ijimpeng.2014.02.015.
    [11]
    ZHENG Z J, WANG C F, YU J L, et al. Dynamic stress-strain states for metal foams using a 3D cellular model [J]. Journal of the Mechanics and Physics of Solids, 2014, 72: 93–114. DOI: 10.1016/j.jmps.2014.07.013.
    [12]
    蔡正宇, 丁圆圆, 王士龙, 等. 梯度多胞牺牲层的抗爆炸分析 [J]. 爆炸与冲击, 2017, 37(3): 396–404. DOI: 10.11883/1001-1455(2017)03-0396-09

    CAI Zhengyu, DING Yuanyuan, WANG Shilong, et al. Anti-blast analysis of graded cellular sacrificial cladding [J]. Explosion and Shock Waves, 2017, 37(3): 396–404. DOI: 10.11883/1001-1455(2017)03-0396-09
    [13]
    YANG J, WANG S L, DING Y Y, et al. Crashworthiness of graded cellular materials: a design strategy based on a nonlinear plastic shock model [J]. Materials Science and Engineering: A, 2017, 680: 411–420. DOI: 10.1016/j.msea.2016.11.010.
    [14]
    DING Y Y, WANG S L, ZHAO K, et al. Blast alleviation of cellular sacrificial cladding: a nonlinear plastic shock model [J]. International Journal of Applied Mechanics, 2016, 8(4): 1650057. DOI: 10.1142/S1758825116500575.
    [15]
    LI K, GAO X L, WANG J. Dynamic crushing behavior of honeycomb structures with irregular cell shapes and non-uniform cell wall thickness [J]. International Journal of Solids and Structures, 2007, 44(14−15): 5003–5026. DOI: 10.1016/j.ijsolstr.2006.12.017.
    [16]
    AJDARI A, NAYEB-HASHEMI H, VAZIRI A. Dynamic crushing and energy absorption of regular, irregular and functionally graded cellular structures [J]. International Journal of Solids and Structures, 2011, 48(3−4): 506–516. DOI: 10.1016/j.ijsolstr.2010.10.018.
    [17]
    张新春, 刘颖. 密度梯度蜂窝材料动力学性能研究 [J]. 工程力学, 2012, 29(8): 372–377. DOI: 10.6052/j.issn.1000-4750.2010.12.0872

    ZHANG Xinchun, LIU Ying. Research on the dynamic crushing of honeycombs with density gradient [J]. Engineering Mechanics, 2012, 29(8): 372–377. DOI: 10.6052/j.issn.1000-4750.2010.12.0872
    [18]
    吴鹤翔, 刘颖. 梯度变化对密度梯度蜂窝材料力学性能的影响 [J]. 爆炸与冲击, 2013, 33(2): 163–168. DOI: 10.3969/j.issn.1001-1455.2013.02.008

    WU Hexiang, LIU Ying. Influences of density gradient variation on mechanical performances of density-graded honeycomb materials [J]. Explosion and Shock Waves, 2013, 33(2): 163–168. DOI: 10.3969/j.issn.1001-1455.2013.02.008
    [19]
    FAN J H, ZHANG J J, WANG Z H, et al. Dynamic crushing behavior of random and functionally graded metal hollow sphere foams [J]. Materials Science and Engineering: A, 2013, 561: 352–361. DOI: 10.1016/j.msea.2012.10.026.
    [20]
    ZHANG J J, WANG Z H, ZHAO L M. Dynamic response of functionally graded cellular materials based on the Voronoi model [J]. Composites Part B: Engineering, 2016, 85: 176–187. DOI: 10.1016/j.compositesb.2015.09.045.
    [21]
    CHEN D, KITIPORNCHAI S, YANG J. Dynamic response and energy absorption of functionally graded porous structures [J]. Materials & Design, 2018, 140: 473–487. DOI: 10.1016/j.matdes.2017.12.019.
    [22]
    常白雪, 郑志军, 赵凯, 等. 梯度多胞材料耐撞性设计的简化模型和渐近解 [J]. 中国科学: 物理学 力学 天文学, 2018, 48(9): 094615. DOI: 10.1360/SSPMA2018-00162

    CHANG Baixue, ZHENG Zhijun, ZHAO Kai, et al. A simplified model and its asymptotic solution for the crashworthiness design of graded cellular material [J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2018, 48(9): 094615. DOI: 10.1360/SSPMA2018-00162
    [23]
    DING Y Y, WANG S L, ZHENG Z J, et al. Dynamic crushing of cellular materials: a unique dynamic stress–strain state curve [J]. Mechanics of Materials, 2016, 100: 219–31. DOI: 10.1016/j.mechmat.2016.07.001.
    [24]
    WANG P, ZHENG Z J, LIAO S F, et al. Strain-rate effect on initial crush stress of irregular honeycomb under dynamic loading and its deformation mechanism [J]. Acta Mechanica Sinica, 2018, 34(1): 117–129. DOI: 10.1007/s10409-017-0716-1.
    [25]
    HE S Y, ZHANG Y, DAI G, et al. Preparation of density-graded aluminum foam [J]. Materials Science and Engineering A, 2014, 618: 496–499. DOI: 10.1016/j.msea.2014.08.087.
  • Relative Articles

    [1]SHU Junxiang, PEI Hongbo, HUANG Wenbin, ZHANG Xu, ZHENG Xianxu. Accurate measurements of detonation pressure and detonation reaction zones of several commonly-used explosives[J]. Explosion And Shock Waves, 2022, 42(5): 052301. doi: 10.11883/bzycj-2021-0305
    [2]LI Bo, HUANG Nan, YANG Jun, QIN Haifeng, YIN Xiao, ZHANG Zhaojing. Effects of medium and static pressure on dynamic characteristics of piezoresistive absolute pressure sensor calibrated by shock tube[J]. Explosion And Shock Waves, 2020, 40(5): 054101. doi: 10.11883/bzycj-2019-0309
    [3]Kong Lin, Su Jianjun, Yang Fan. Dynamic correction and compensation method about the measuring curve of shockwave reflected pressure[J]. Explosion And Shock Waves, 2017, 37(6): 1051-1056. doi: 10.11883/1001-1455(2017)06-1051-06
    [4]WANG De-tian, LI Ze-ren, WU Jian-rong, LIU Shou-xian, LIU Jun, MENG Jian-hua, PENG Qi-xian, CHEN Guang-hua, LIU Qiao. An optical-fiber displacement interferometer for measuring velocities of explosively-driven metal plates[J]. Explosion And Shock Waves, 2009, 29(1): 105-108. doi: 10.11883/1001-1455(2009)01-0105-04
    [5]ZHANG Zu-gen, LI Ying-lei, LI Ying-hua, CHEN Xi-meng. Influences of bar/specimen contact surfaces indentation on strain measurement in SHPB experiments[J]. Explosion And Shock Waves, 2009, 29(6): 573-578. doi: 10.11883/1001-1455(2009)06-0573-06
    [6]LI Ze-ren. The influence of the modal dispersion of signal fiber on velocity measurement in VISAR applications[J]. Explosion And Shock Waves, 2005, 25(5): 457-460. doi: 10.11883/1001-1455(2005)05-0457-04
  • Cited by

    Periodical cited type(11)

    1. 万文超,张兆龙,吕宁,蔡斯渊,洪旸. 冲击波和破片联合作用下舱段毁伤效应分析. 舰船科学技术. 2024(03): 19-27 .
    2. 赵著杰,侯海量,吴晓伟,李永清,李典,姜安邦. 冲击载荷下蓄液结构动响应及防护机理的研究进展. 爆炸与冲击. 2024(05): 17-49 . 本站查看
    3. 李营,杜志鹏,陈赶超,王诗平,侯海量,李晓彬,张攀,张伦平,孔祥韶,李海涛,郭君,姚术健,王志凯,殷彩玉. 舰艇爆炸毁伤与防护若干关键问题研究进展. 中国舰船研究. 2024(03): 3-60 .
    4. 李营,李延,刘海燕,王伟,方岱宁. 舱内爆炸作用下固支方板的变形与破坏模式. 船舶力学. 2021(07): 927-934 .
    5. 任宪奔,江鹏,李营,方岱宁. 舰船结构舱内爆炸毁伤与防护研究进展. 中国科学:物理学 力学 天文学. 2021(12): 7-26 .
    6. 张国栋,侯海量,刘贵兵,朱锡. 舰船舱室水雾抑爆技术研究进展. 舰船科学技术. 2020(03): 1-11 .
    7. 李营,张磊,杜志鹏,任宪奔,张小强,方岱宁. 舱内爆炸准静态压力形成机理的研究. 中国造船. 2020(02): 28-34 .
    8. 李营,张磊,杜志鹏,周心桃,肖登宝,方岱宁. 改变应力状态的抗内爆炸舱壁. 船舶力学. 2020(09): 1151-1157 .
    9. 金键,朱锡,侯海量,李典,陈鹏宇,高圣智. 大型舰船在水下接触爆炸下的毁伤与防护研究综述. 爆炸与冲击. 2020(11): 15-39 . 本站查看
    10. 徐其鹏,李芝绒,陈君,韩璐,刘彦,苏健军,黄风雷. 地形对地面爆炸空中冲击波传播规律的影响. 兵工学报. 2020(S2): 96-101 .
    11. 李营,张磊,杜志鹏,赵鹏铎,周心桃,刘建湖,方岱宁. 反舰导弹舱内爆炸作用下舰船结构毁伤机理研究进展. 中国造船. 2018(03): 185-202 .

    Other cited types(6)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (5445) PDF downloads(146) Cited by(17)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return