Volume 39 Issue 11
Nov.  2019
Turn off MathJax
Article Contents
WU Yuwen, CHU Chi, WENG Chunsheng, ZHENG Quan. Experimental research on the influence of orifice plate perturbation on detonation cellular structure characteristics[J]. Explosion And Shock Waves, 2019, 39(11): 112102. doi: 10.11883/bzycj-2018-0482
Citation: WU Yuwen, CHU Chi, WENG Chunsheng, ZHENG Quan. Experimental research on the influence of orifice plate perturbation on detonation cellular structure characteristics[J]. Explosion And Shock Waves, 2019, 39(11): 112102. doi: 10.11883/bzycj-2018-0482

Experimental research on the influence of orifice plate perturbation on detonation cellular structure characteristics

doi: 10.11883/bzycj-2018-0482
  • Received Date: 2018-11-30
  • Rev Recd Date: 2019-06-17
  • Available Online: 2019-10-25
  • Publish Date: 2019-11-01
  • The influence of orifice plate perturbation on detonation cellular structure was experimentally investigated. The cellular structure of detonation wave was recorded in a circular detonation tube withthe smoked film method.The stable mixture 2H2+O2+3Ar and unstable mixture C2H2+5N2O and CH4+2O2 were used. The correlation between cell size and initial pressure was obtained. The variations of cellular structure upstream and downstream of perturbation were studied, and influence of cellular instability oncellular structure characteristics was analyzed. The characteristic length scaleofdetonation recovery from perturbation was obtained. The results show that after the perturbation the main cell structure becomes irregular when no secondary cells appearfor the stable mixture,while for the unstable mixture, the secondary modes of the detonation wave downstream of the perturbationareinitially suppressed, subsequently the local explosions and fine cellsare generated due to the cellular instability. The detonation wave propagates some distance and recovers to the equilibrium state. This characteristic length varies within the range of 8 to 15 timesthe cell size, while it does not change with the initial pressure. The resultimplies that the characteristic length scale of the detonation wave recovery fromthe perturbationequatesto the detonation hydrodynamic thickness.
  • loading
  • [1]
    LEE J H S. The detonation phenomenon[M]. Cambridge: Cambridge University Press, 2008.
    [2]
    SHEPHERD J E. Detonation in gases [J]. Proceedings of the Combustion Institute, 2009, 32(1): 83–98. DOI: 10.1016/j.proci.2008.08.006.
    [3]
    LEE J. Dynamic parameters of gaseous detonations [J]. Annual Review of Fluid Mechanics, 1984, 16(1): 311–336. DOI: 10.1146/annurev.fluid.16.1.311.
    [4]
    DESBORDES D, GUERRAUD C, HAMADA L, et al. Failure of the classical dynamic parameters relationships in highly regular cellular detonation systems [M] // Dynamic Aspects of Detonations. WashingtonDC: AIAA, 1993: 347-359. DOI: 10.2514/5.9781600866265.0347.0359
    [5]
    姜宗林, 滕宏辉. 气相规则胞格爆轰波起爆与传播统一框架的几个关键基础问题研究 [J]. 中国科学: 物理学力学天文学, 2012, 42(4): 421–435.

    JIANG Zonglin, TENG Honghui. Research on some fundamental problems of the universal framework for regular gaseous detonation initiation and propagation [J]. Scientia Sinica: Physica, Mechanica and Astronomica, 2012, 42(4): 421–435.
    [6]
    张薇, 刘云峰, 滕宏辉, 等. 气相爆轰波传播过程中的自点火效应 [J]. 爆炸与冲击, 2017, 37(2): 274–282. DOI: 10.11883/1001-1455(2017)02-0274-09.

    ZHANG Wei, LIU Yunfeng, TENG Honghui, et al. Auto-ignition effect in gaseous detonation propagation [J]. Explosion and Shock Waves, 2017, 37(2): 274–282. DOI: 10.11883/1001-1455(2017)02-0274-09.
    [7]
    颜秉健, 张博, 高远, 等. 气相爆轰波近失效状态的传播模式 [J]. 爆炸与冲击, 2018, 38(6): 1435–1440. DOI: 10.11883/bzycj-2017-0167.

    YAN Bingjian, ZHANG Bo, GAO Yuan, et al. Investigation of the propagation modes for gaseous detonation at near-limit condition [J]. Explosion and Shock Waves, 2018, 38(6): 1435–1440. DOI: 10.11883/bzycj-2017-0167.
    [8]
    SORIN R, ZITOUN R, KHASAINOV B, et al. Detonation diffraction through different geometries [J]. Shock Waves, 2009, 19(1): 11–23. DOI: 10.1007/s00193-008-0179-1.
    [9]
    LV Y, IHME M. Computational analysis of re-ignition and re-initiation mechanisms of quenched detonation waves behind a backward facing step [J]. Proceedings of the Combustion Institute, 2015, 35(2): 1963–1972. DOI: 10.1016/j.proci.2014.07.041.
    [10]
    WU Y W, ZHENG Q, WENG C S. An experimental study on the detonation transmission behaviours in acetylene-oxygen-argon mixtures [J]. Energy, 2018, 143: 554–561. DOI: 10.1016/j.energy.2017.11.019.
    [11]
    喻健良, 张东, 闫兴清. 管道内全阻塞障碍物对气相爆轰波传播特性的影响 [J]. 爆炸与冲击, 2017, 37(3): 447–452. DOI: 10.11883/1001-1455(2017)03-0447-06.

    YU Jianliang, ZHANG Dong, YAN Xingqing. Influences of blocked obstacles on propagation of gaseous detonation in pipeline [J]. Explosion and Shock Waves, 2017, 37(3): 447–452. DOI: 10.11883/1001-1455(2017)03-0447-06.
    [12]
    ZHANG B, LIU H. The effects of large scale perturbation-generating obstacles on the propagation of detonation filled with methane-oxygen mixture [J]. Combustion and Flame, 2017, 182: 279–287. DOI: 10.1016/j.combustflame.2017.04.025.
    [13]
    刘杰, 赵焕娟, 杜忠华, 等. 气相爆轰波马赫反射非自相似性特征的实验 [J]. 航空动力学报, 2016, 31(3): 588–597. DOI: 10.13224/j.cnki.jasp.2016.03.009.

    LIU Jie, ZHAO Huanjuan, DU Zhonghua, et al. Experiment on non-self-similar of Mach reflection of gaseous detonation wave [J]. Journal of Aerospace Power, 2016, 31(3): 588–597. DOI: 10.13224/j.cnki.jasp.2016.03.009.
    [14]
    赵焕娟, 严屹然, 张英华, 等. 预混气爆轰马赫反射实验研究 [J]. 推进技术, 2017, 38(11): 2572–2579. DOI: 10.13675/j.cnki.tjjs.2017.11.021.

    ZHAO Huanjuan, YAN Yiran, ZHANG Yinghua, et al. Experimental studying on Mach reflection of detonation wave of premixed mixtures [J]. Journal of Propulsion Technology, 2017, 38(11): 2572–2579. DOI: 10.13675/j.cnki.tjjs.2017.11.021.
    [15]
    SOLOUKHIN R I. Multiheaded structure of gaseous detonation [J]. Combustion and Flame, 1966, 10(1): 51–58. DOI: 10.1016/0010-2180(66)90027-7.
    [16]
    朱雨建, 杨基明. 爆轰波与激波对撞的实验研究 [J]. 力学学报, 2008, 40(6): 721–728. DOI: 10.3321/j.issn:0459-1879.2008.06.001.

    ZHU Yujian, YANG Jiming. An experimental study on head-on collision of detonation with shock [J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(6): 721–728. DOI: 10.3321/j.issn:0459-1879.2008.06.001.
    [17]
    BOTROS B, NG H, ZHU Y, et al. The evolution and cellular structure of a detonation subsequent to a head-on interaction with a shock wave [J]. Combustion and Flame, 2007, 151(4): 573–580. DOI: 10.1016/j.combustflame.2007.07.018.
    [18]
    LI J, REN H L, WANG X H, et al. Length scale effect on Mach reflection of cellular detonations [J]. Combustion and Flame, 2018, 189: 378–392. DOI: 10.1016/j.combustflame.2017.11.002.
    [19]
    LEE J H S, RADULESCU M I. On the hydrodynamic thickness of cellular detonations [J]. Combustion, Explosion, and Shock Waves, 2005, 41(6): 745–765. DOI: 10.1007/s10573-005-0084-1.
    [20]
    CICCARELLI G, BOCCIO J L. Detonation wave propagation through a single orifice plate in a circular tube [J]. Symposium (International) on Combustion, 1998, 27(2): 2233–2239. DOI: 10.1016/s0082-0784(98)80072-6.
    [21]
    PINTGEN F, SHEPHERD J E. Detonation diffraction in gases [J]. Combustion and Flame, 2009, 156(3): 665–677. DOI: 10.1016/j.combustflame.2008.09.008.
    [22]
    ZHANG B, SHEN X B, PANG L, et al. Detonation velocity deficits of H2/O2/Ar mixture in round tube and annular channels [J]. International Journal of Hydrogen Energy, 2015, 40(43): 15078–15087. DOI: 10.1016/j.ijhydene.2015.09.036.
    [23]
    SHEPHERD J E. Detonation database[DB/OL]. (2005-01-25)[2015-08-28]. http://shepherd.caltech.edu/detn_db/html/db.html
    [24]
    ZHAO H, LEE J H S, LEE J, et al. Quantitative comparison of cellular patterns of stable and unstable mixtures [J]. Shock Waves, 2016, 26(5): 621–633. DOI: 10.1007/s00193-016-0673-9.
    [25]
    GAO Y, NG H D, LEE J H S. Minimum tube diameters for steady propagation of gaseous detonations [J]. Shock Waves, 2014, 24(4): 447–454. DOI: 10.1007/s00193-014-0505-8.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (6009) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return