Citation: | WU Yuwen, CHU Chi, WENG Chunsheng, ZHENG Quan. Experimental research on the influence of orifice plate perturbation on detonation cellular structure characteristics[J]. Explosion And Shock Waves, 2019, 39(11): 112102. doi: 10.11883/bzycj-2018-0482 |
[1] |
LEE J H S. The detonation phenomenon[M]. Cambridge: Cambridge University Press, 2008.
|
[2] |
SHEPHERD J E. Detonation in gases [J]. Proceedings of the Combustion Institute, 2009, 32(1): 83–98. DOI: 10.1016/j.proci.2008.08.006.
|
[3] |
LEE J. Dynamic parameters of gaseous detonations [J]. Annual Review of Fluid Mechanics, 1984, 16(1): 311–336. DOI: 10.1146/annurev.fluid.16.1.311.
|
[4] |
DESBORDES D, GUERRAUD C, HAMADA L, et al. Failure of the classical dynamic parameters relationships in highly regular cellular detonation systems [M] // Dynamic Aspects of Detonations. WashingtonDC: AIAA, 1993: 347-359. DOI: 10.2514/5.9781600866265.0347.0359
|
[5] |
姜宗林, 滕宏辉. 气相规则胞格爆轰波起爆与传播统一框架的几个关键基础问题研究 [J]. 中国科学: 物理学力学天文学, 2012, 42(4): 421–435.
JIANG Zonglin, TENG Honghui. Research on some fundamental problems of the universal framework for regular gaseous detonation initiation and propagation [J]. Scientia Sinica: Physica, Mechanica and Astronomica, 2012, 42(4): 421–435.
|
[6] |
张薇, 刘云峰, 滕宏辉, 等. 气相爆轰波传播过程中的自点火效应 [J]. 爆炸与冲击, 2017, 37(2): 274–282. DOI: 10.11883/1001-1455(2017)02-0274-09.
ZHANG Wei, LIU Yunfeng, TENG Honghui, et al. Auto-ignition effect in gaseous detonation propagation [J]. Explosion and Shock Waves, 2017, 37(2): 274–282. DOI: 10.11883/1001-1455(2017)02-0274-09.
|
[7] |
颜秉健, 张博, 高远, 等. 气相爆轰波近失效状态的传播模式 [J]. 爆炸与冲击, 2018, 38(6): 1435–1440. DOI: 10.11883/bzycj-2017-0167.
YAN Bingjian, ZHANG Bo, GAO Yuan, et al. Investigation of the propagation modes for gaseous detonation at near-limit condition [J]. Explosion and Shock Waves, 2018, 38(6): 1435–1440. DOI: 10.11883/bzycj-2017-0167.
|
[8] |
SORIN R, ZITOUN R, KHASAINOV B, et al. Detonation diffraction through different geometries [J]. Shock Waves, 2009, 19(1): 11–23. DOI: 10.1007/s00193-008-0179-1.
|
[9] |
LV Y, IHME M. Computational analysis of re-ignition and re-initiation mechanisms of quenched detonation waves behind a backward facing step [J]. Proceedings of the Combustion Institute, 2015, 35(2): 1963–1972. DOI: 10.1016/j.proci.2014.07.041.
|
[10] |
WU Y W, ZHENG Q, WENG C S. An experimental study on the detonation transmission behaviours in acetylene-oxygen-argon mixtures [J]. Energy, 2018, 143: 554–561. DOI: 10.1016/j.energy.2017.11.019.
|
[11] |
喻健良, 张东, 闫兴清. 管道内全阻塞障碍物对气相爆轰波传播特性的影响 [J]. 爆炸与冲击, 2017, 37(3): 447–452. DOI: 10.11883/1001-1455(2017)03-0447-06.
YU Jianliang, ZHANG Dong, YAN Xingqing. Influences of blocked obstacles on propagation of gaseous detonation in pipeline [J]. Explosion and Shock Waves, 2017, 37(3): 447–452. DOI: 10.11883/1001-1455(2017)03-0447-06.
|
[12] |
ZHANG B, LIU H. The effects of large scale perturbation-generating obstacles on the propagation of detonation filled with methane-oxygen mixture [J]. Combustion and Flame, 2017, 182: 279–287. DOI: 10.1016/j.combustflame.2017.04.025.
|
[13] |
刘杰, 赵焕娟, 杜忠华, 等. 气相爆轰波马赫反射非自相似性特征的实验 [J]. 航空动力学报, 2016, 31(3): 588–597. DOI: 10.13224/j.cnki.jasp.2016.03.009.
LIU Jie, ZHAO Huanjuan, DU Zhonghua, et al. Experiment on non-self-similar of Mach reflection of gaseous detonation wave [J]. Journal of Aerospace Power, 2016, 31(3): 588–597. DOI: 10.13224/j.cnki.jasp.2016.03.009.
|
[14] |
赵焕娟, 严屹然, 张英华, 等. 预混气爆轰马赫反射实验研究 [J]. 推进技术, 2017, 38(11): 2572–2579. DOI: 10.13675/j.cnki.tjjs.2017.11.021.
ZHAO Huanjuan, YAN Yiran, ZHANG Yinghua, et al. Experimental studying on Mach reflection of detonation wave of premixed mixtures [J]. Journal of Propulsion Technology, 2017, 38(11): 2572–2579. DOI: 10.13675/j.cnki.tjjs.2017.11.021.
|
[15] |
SOLOUKHIN R I. Multiheaded structure of gaseous detonation [J]. Combustion and Flame, 1966, 10(1): 51–58. DOI: 10.1016/0010-2180(66)90027-7.
|
[16] |
朱雨建, 杨基明. 爆轰波与激波对撞的实验研究 [J]. 力学学报, 2008, 40(6): 721–728. DOI: 10.3321/j.issn:0459-1879.2008.06.001.
ZHU Yujian, YANG Jiming. An experimental study on head-on collision of detonation with shock [J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(6): 721–728. DOI: 10.3321/j.issn:0459-1879.2008.06.001.
|
[17] |
BOTROS B, NG H, ZHU Y, et al. The evolution and cellular structure of a detonation subsequent to a head-on interaction with a shock wave [J]. Combustion and Flame, 2007, 151(4): 573–580. DOI: 10.1016/j.combustflame.2007.07.018.
|
[18] |
LI J, REN H L, WANG X H, et al. Length scale effect on Mach reflection of cellular detonations [J]. Combustion and Flame, 2018, 189: 378–392. DOI: 10.1016/j.combustflame.2017.11.002.
|
[19] |
LEE J H S, RADULESCU M I. On the hydrodynamic thickness of cellular detonations [J]. Combustion, Explosion, and Shock Waves, 2005, 41(6): 745–765. DOI: 10.1007/s10573-005-0084-1.
|
[20] |
CICCARELLI G, BOCCIO J L. Detonation wave propagation through a single orifice plate in a circular tube [J]. Symposium (International) on Combustion, 1998, 27(2): 2233–2239. DOI: 10.1016/s0082-0784(98)80072-6.
|
[21] |
PINTGEN F, SHEPHERD J E. Detonation diffraction in gases [J]. Combustion and Flame, 2009, 156(3): 665–677. DOI: 10.1016/j.combustflame.2008.09.008.
|
[22] |
ZHANG B, SHEN X B, PANG L, et al. Detonation velocity deficits of H2/O2/Ar mixture in round tube and annular channels [J]. International Journal of Hydrogen Energy, 2015, 40(43): 15078–15087. DOI: 10.1016/j.ijhydene.2015.09.036.
|
[23] |
SHEPHERD J E. Detonation database[DB/OL]. (2005-01-25)[2015-08-28]. http://shepherd.caltech.edu/detn_db/html/db.html
|
[24] |
ZHAO H, LEE J H S, LEE J, et al. Quantitative comparison of cellular patterns of stable and unstable mixtures [J]. Shock Waves, 2016, 26(5): 621–633. DOI: 10.1007/s00193-016-0673-9.
|
[25] |
GAO Y, NG H D, LEE J H S. Minimum tube diameters for steady propagation of gaseous detonations [J]. Shock Waves, 2014, 24(4): 447–454. DOI: 10.1007/s00193-014-0505-8.
|