Volume 39 Issue 10
Oct.  2019
Turn off MathJax
Article Contents
ZHU Xiaochao, ZHENG Ligang, YU Shuijun, WANG Yalei, LI Gang, DU Depeng, DOU Zengguo. Effect of blocking ratio on aluminum powder explosion’s characteristicsin vertical duct[J]. Explosion And Shock Waves, 2019, 39(10): 105402. doi: 10.11883/bzycj-2019-0006
Citation: ZHU Xiaochao, ZHENG Ligang, YU Shuijun, WANG Yalei, LI Gang, DU Depeng, DOU Zengguo. Effect of blocking ratio on aluminum powder explosion’s characteristicsin vertical duct[J]. Explosion And Shock Waves, 2019, 39(10): 105402. doi: 10.11883/bzycj-2019-0006

Effect of blocking ratio on aluminum powder explosion’s characteristicsin vertical duct

doi: 10.11883/bzycj-2019-0006
  • Received Date: 2019-01-08
  • Rev Recd Date: 2019-01-24
  • Available Online: 2019-09-25
  • Publish Date: 2019-10-01
  • In this work, experimenting on a self-built vertically transparent duct, we investigated the influence of the blocking ratio (φ) for duct-end venting on the explosive characteristics of aluminum dust explosion through analysis of its such characteristics as the flame front evolution and pressure history. The results show that the blocking ratio had a great influence on the flame front structure of aluminum powder of a small particle size. The overpressure in the pipeline exhibited a bimodal waveform and there was an inflection point of the blocking ratio φ=0.4 where the dominance of two overpressure peaks reversed. The first overpressure peak as a function of the blocking ratio was different from that of the second beyond the inflection point. The first overpressure peak increased as did the blocking ratio, and the increase rate rose greatly with φ=0.4 as the turning point. The second overpressure peak first rose and then fell with the increase of the blocking ratio, and reached the maximum at φ=0.4. Both peak values as a function of the blocking ratio for the large particle size were similar to that for the small particle size. However, the inflection point shifted to φ=0.6. The maximum (dominant) overpressure peak increased with the increase of the blocking ratio. A smaller particle size dust is prone to generating a more hazardous overpressure.
  • loading
  • [1]
    LI G, YANG H X, YUAN C M, et al. A catastrophic aluminium-alloy dust explosion in China [J]. Journal of Loss Prevention in the Process Industries, 2015, 39: 121–130.
    [2]
    安全监管总局. 安全监管总局通报2016年工贸行业粉尘防爆专项整治工作情况 [J]. 中国应急管理, 2017(3): 43–45.
    [3]
    李庆钊, 王可, 梅晓凝, 等. 微米级铝粉的爆炸特性及其反应机理研究 [J]. 工程热物理学报, 2017, 38(1): 219–225.

    LI Qingzhao, WANG Ke, MEI Xiaoning, et al. Investigation on explosion characteristics and reaction mechanism of micro-aluminum powder [J]. Journal of Engineering Theermophysics, 2017, 38(1): 219–225.
    [4]
    LI Q, WANG K, ZHENG Y, et al. Explosion severity of micro-sized aluminum dust and its flame propagation properties in 20 L spherical vessel [J]. Powder Technology, 2016, 301: 1299–1308. DOI: 10.1016/j.powtec.2016.08.012.
    [5]
    沈世磊, 张奇, 马秋菊, 等. 湍流对铝粉爆炸特性的影响 [J]. 兵工学报, 2016, 37(3): 455–461. DOI: 10.3969/j.issn.1000-1093.2016.03.010.

    SHEN Shilei, ZHANG Qi, MA Qiujun, et al. Effect of turbulence on explosion characteristics of aluminium dust/air [J]. Acta Armamentarii, 2016, 37(3): 455–461. DOI: 10.3969/j.issn.1000-1093.2016.03.010.
    [6]
    LIU X, ZHANG Q. Influence of turbulent flow on the explosion parameters of micro- and nano-aluminum powder-air mixtures [J]. Journal of Hazardous Materials, 2015, 299: 603–617. DOI: 10.1016/j.jhazmat.2015.07.068.
    [7]
    谭汝媚, 张奇, 张博. 点火延迟时间对铝粉爆炸特性参数的影响 [J]. 爆炸与冲击, 2014, 34(1): 17–22. DOI: 10.11883/1001-1455(2014)01-0017-06.

    TAN Rumei, ZHANG Qi, ZHANG Bo. Effect of ignition delay time on characteristic parameters of aluminum dust explosion [J]. Explosion and Shock Waves, 2014, 34(1): 17–22. DOI: 10.11883/1001-1455(2014)01-0017-06.
    [8]
    谭汝媚, 张奇. 环境湿度对铝粉爆炸特性参数影响的实验研究 [J]. 兵工学报, 2013, 34(8): 965–969.

    TAN Rumei, ZHANG Qi. Experimental research of the effect of ambient humidity on the explosion characteristic parameters of aluminum powder [J]. Acta Armamentarii, 2013, 34(8): 965–969.
    [9]
    张博, 张奇, 谭汝媚. 喷粉压力及点火延迟时间对粉尘爆炸参数的影响 [J]. 高压物理学报, 2014, 28(2): 183–190. DOI: 10.11858/gywlxb.2014.02.008.

    ZHANG Bo, ZHANG Qi, TAN Rumei. Influence of dispersion pressure and ignition delay time on the dust explosion parameters [J]. Chinese Journal of High Pressure Physics, 2014, 28(2): 183–190. DOI: 10.11858/gywlxb.2014.02.008.
    [10]
    SUN J, DOBASHI R, HIRANO T. Structure of flames propagating through aluminum particles cloud and combustion process of particles [J]. journal of loss prevention in the Process Industries, 2006, 19: 769–773. DOI: 10.1016/j.jlp.2006.01.002.
    [11]
    胡东涛, 陈先锋, 陈曦. 不同粒径铝粉火焰传播特性试验研究 [J]. 中国安全科学学报, 2016, 26(8): 41–45.

    HU Dongtao, CHEN Xianfeng, CHEN Xi. Experimental study on aluminum dust flame propagation characteristics [J]. China Safety Science Journal, 2016, 26(8): 41–45.
    [12]
    任瑞娥, 谭迎新. 浓度对铝粉爆炸特性的影响研究 [J]. 消防科学与技术, 2014(4): 375–377. DOI: 10.3969/j.issn.1009-0029.2014.04.005.

    REN Ruie, TAN Yingxin. Study on the effect of concentration on the characteristcs of aluminum dust explosion [J]. Fire Science and Technology, 2014(4): 375–377. DOI: 10.3969/j.issn.1009-0029.2014.04.005.
    [13]
    尉存娟, 谭迎新, 路旭, 等. 点火延迟时间对铝粉爆炸压力的影响研究 [J]. 中北大学学报(自然科学版), 2009, 30(3): 257–260. DOI: 10.3969/j.issn.1673-3193.2009.03.013.

    YU Cunjuan, TAN Yingxin, LU Xu, et al. Effect of the ignition delay time on the explosion pressure of aluminum dust [J]. Journal of North University of China (Natural Science Edition), 2009, 30(3): 257–260. DOI: 10.3969/j.issn.1673-3193.2009.03.013.
    [14]
    谭迎新, 霍晓东, 尉存娟. 不同粒度铝粉在水平管道内的爆炸压力测定 [J]. 中国安全科学学报, 2008, 18(12): 80–83. DOI: 10.3969/j.issn.1003-3033.2008.12.013.

    TAN Yingxin, HUO Xiaodong, YU Cunjian. Explosion pressure test of different-sized aluminum powder in horizontal pipeline equipment [J]. China Safety Science Journal, 2008, 18(12): 80–83. DOI: 10.3969/j.issn.1003-3033.2008.12.013.
    [15]
    YAN X, LI D, YU J. Secondary explosions in relief duct during aluminum dust explosion venting [J]. Procedia Engineering, 2012, 45: 431–434. DOI: 10.1016/j.proeng.2012.08.181.
    [16]
    喻健良, 杨少丽, 吕明宇. 金属粉尘燃爆泄放特性研究 [J]. 石油化工设备, 2007(4): 6–10. DOI: 10.3969/j.issn.1000-7466.2007.04.002.

    YU Jianliang, YANG Shaoli, LV Mingyu. Study on the explosion venting characters of metal dusts [J]. Petro-Chenical Equipment, 2007(4): 6–10. DOI: 10.3969/j.issn.1000-7466.2007.04.002.
    [17]
    ZHENG L G, LI G, WANG Y L, et al. Effect of blockage ratios on the characteristics of methane/air explosion suppressed by BC powder [J]. Journal of Hazardous Materials, 2018, 355: 25–33. DOI: 10.1016/j.jhazmat.2018.04.070.
    [18]
    XIAO H H, WANG Q S, SHEN X B, et al. An experimental study of premixed hydrogen/air flame propagation in a partially open duct [J]. International Journal of Hydrogen Energy, 2014, 39(11): 6233–6241. DOI: 10.1016/j.ijhydene.2013.05.003.
    [19]
    AIRASH M J, ZANGANEH J, MOGHTADERI B. Flame deflagration in side-on vented detonation tubes: a large scale study [J]. Journal of Hazardous Materials, 2018, 345: 38–47. DOI: 10.1016/j.jhazmat.2017.11.014.
    [20]
    陈曦, 陈先锋, 张洪铭, 等. 惰化剂粒径对铝粉火焰传播特性影响的实验研究 [J]. 爆炸与冲击, 2017, 37(4): 759–765. DOI: 10.11883/1001-1455(2017)04-0759-07.

    CHEN Xi, CHEN Xianfeng, ZHANG Hongming, et al. Effect of inerting agent with different particle sizes on the flame propagation of aluminum dust [J]. Explosion and Shock Waves, 2017, 37(4): 759–765. DOI: 10.11883/1001-1455(2017)04-0759-07.
    [21]
    VOROZHTSOV A B, LERNER M, RODKEVICH N, et al. Oxidation of nano-sized aluminum powders [J]. Thermochimica Acta, 2016(636): 48–56.
    [22]
    郑立刚, 苏洋, 李刚, 等. 点火位置对氢气/甲烷/空气预混气体爆燃特性的影响 [J]. 化工学报, 2017, 68(12): 4874–4881.

    ZHENG Ligang, SU Yang, LI Gang, et al. Effect of ignition position on deflagration characteristics of premixed hydrogen/methane/air [J]. Journal of Chemical Industry and Engineering, 2017, 68(12): 4874–4881.
    [23]
    ZHENG L G, ZHU X C, WANG Y L, et al. Combined effect of ignition position and equivalence ratio on the characteristics of premixed hydrogen/air deflagrations [J]. International Journal of Hydrogen Energy, 2018, 43(33): 16430–16441. DOI: 10.1016/j.ijhydene.2018.06.189.
    [24]
    HUANG Y, RISHA G A, YANG V, et al. Effect of particle size on combustion of aluminum particle dust in air [J]. Combustion and Flame, 2008(156): 5–13.
    [25]
    CORCORAN A L, HOFFMANN V K, DREIZIN E L. Aluminum particle combustion in turbulent flames [J]. Combustion and Flame, 2013, 160(3): 718–724. DOI: 10.1016/j.combustflame.2012.11.008.
    [26]
    李亚男. 磷酸二氢铵对金属粉尘的爆炸抑制研究[D]. 太原: 中北大学, 2015: 14.
    [27]
    HUANG Y, RISHA G A, YANG V, et al. Combustion of bimodal nano/micron-sized aluminum particle dust in air [J]. Proceedings of the Combustion Institute, 2007, 31(2): 2001–2009. DOI: 10.1016/j.proci.2006.08.103.
    [28]
    范宝春, 谢波, 张小和, 等. 惰性粉尘抑爆过程的实验研究 [J]. 流体力学实验与测量, 2001, 15(4): 20–25. DOI: 10.3969/j.issn.1672-9897.2001.04.005.

    FAN Baochun, XIE Bo, ZHANG Xiaohe, et al. Experimental research on explosion suppression by inert particles [J]. Experiments and Measurements in Fluid Mechanics, 2001, 15(4): 20–25. DOI: 10.3969/j.issn.1672-9897.2001.04.005.
    [29]
    JIANG H P, BI M S, LI B, et al. Inhibition evaluation of ABC powder in aluminum dust explosion [J]. Journal of Hazardous Materials, 2018, 361: 273–282.
    [30]
    CASTELLANOS D, CARRETO-VAZQUEZ V H, MASHUGA C V, et al. The effect of particle size polydispersity on the explosibility characteristics of aluminum dust [J]. Powder Technology, 2014, 254: 331–337. DOI: 10.1016/j.powtec.2013.11.028.
    [31]
    DUFAUD O, TRAORE M, PERRIN L, et al. Experimental investigation and modelling of aluminum dusts explosions in the 20 L sphere [J]. Journal of Loss Prevention in the Process Industries, 2009, 23(2).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (5239) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return