Citation: | SHI Tongya, LIU Dongsheng, CHEN Wei, XIE Puchu, WANG Xiaofeng, WANG Yonggang. Dynamic tensile behavior and spall fracture of GP1 stainless steel processed by selective laser melting[J]. Explosion And Shock Waves, 2019, 39(7): 073101. doi: 10.11883/bzycj-2019-0015 |
[1] |
SAMES W J, LIST F A, PANALA S, et al. The metallurgy and processing science of metal additive manufacturing [J]. International Materials Reviews, 2016, 61(5): 1–46. DOI: 10.1080/09506608.2015.1116649.
|
[2] |
ZHAI Y, LADOS D A, LAGOY J L. Additive manufacturing: making imagination the major limitation [J]. Journal of metals, 2014, 66(5): 808–816. DOI: 10.1007/s11837-014-0886-2.
|
[3] |
YADOLLAHI A, SHAMSAEI N. Additive manufacturing of fatigue resistant materials: challenges and opportunities [J]. International Journal of Fatigue, 2017, 98(1): 14–31. DOI: 10.1016/j.ijfatigue.2017.01.001.
|
[4] |
王沛, 黄正华, 戚文军, 等. 基于SLM技术的3D打印工艺参数对316不锈钢组织缺陷的影响 [J]. 机械制造文摘: 焊接分册, 2016, 1(2): 2–7.
WANG Pei, HUANG Zhenghua, QI Wenjun, et al. Effects of 3D printing process parameters based on SLM technology on structural defects of 316 stainless steel [J]. Mechanical Manufacturing Abstracts: Welding Brochures, 2016, 1(2): 2–7.
|
[5] |
吕豪, 杨志斌, 王鑫, 等. 激光增材制造GH4099合金热处理后的显微组织及拉伸性能 [J]. 中国激光, 2018, 45(10): 3–9. DOI: 10.3788/cjl.201845.1002003.
LÜ Hao, YANG Zhibin, WANG Xin, et al. Microstructure and tensile properties of GH4099 alloy fabricated by laser additive manufacturing after heat treatment [J]. Chinese Journal of Lasers, 2018, 45(10): 3–9. DOI: 10.3788/cjl.201845.1002003.
|
[6] |
尹燕, 刘鹏宇. 路超., et al 选区激光熔化成形316L不锈钢微观组织及拉伸性能分析 [J]. 焊接学报, 2018, 39(8): 77–81. DOI: 10.12073/j.hjxb.2018390205.
YIN Yan, LIU Pengyu, LU Chao, et al. Microstructure and tensile properties of selective laser melting forming 316L stainless steel [J]. Transactions of the China Welding Institution, 2018, 39(8): 77–81. DOI: 10.12073/j.hjxb.2018390205.
|
[7] |
王志会, 王华明, 刘栋. 激光增材制造AF1410超高强度钢组织与力学性能研究 [J]. 中国激光, 2016, 43(4): 59–65. DOI: 10.3788/CJL201643.0403001.
WANG Zhihui, WANG Huaming, LIU Dong. Microstructure and mechanical properties of AF1410 ultra-high strength steel using laser additive manufacture technique [J]. Chinese Journal of Lasers, 2016, 43(4): 59–65. DOI: 10.3788/CJL201643.0403001.
|
[8] |
YADOLLAHI A, SHAMSAEI N, THOMPSONS M, et al. Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel [J]. International Journal of Fatigue, 2017, 94(11): 218–235. DOI: 10.1016/j.ijfatigue.2016.03.014.
|
[9] |
SURYAWANSHI J. Mechanical behavior of selective laser melted 316L stainless steels [J]. Materials Science and Engineering: A, 2017, 696(7): 113–121. DOI: 10.1016/j.msea.2017.04.058.
|
[10] |
WANG Y M, VOISIN T, MCKEOWN J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility [J]. Nature Materials, 2017, 17(1): 63–71. DOI: 10.1038/nmat5021.
|
[11] |
YU S, HEBERT R J, MARK A. Effect of heat treatments on microstructural evolution of additively manufactured and wrought 17-4PH stainless steel [J]. Materials and Design, 2018, 156(10): 429–440. DOI: 10.1016/j.matdes.2018.07.015.
|
[12] |
GRAY G T, LIVESCU V, RIGG P A, et al. Structure/property (constitutive and spallation response) of additive manufactured 316L stainless steel [J]. Acta Materialia, 2017, 138(10): 140–149. DOI: 10.1016/j.actamat.2017.07.045.
|
[13] |
SONG B, NISHIDA E, SANBORN B, et al. Compressive and tensile stress-strain responses of additively manufactured (AM) 304L stainless steel at high strain rates [J]. Journal of Dynamic Behavior of Materials, 2017, 3(3): 412–425. DOI: 10.1007/s40870-017-0122-6.
|
[14] |
BRANDON M W, BRAHMANNADA P, ANDELLE K, et al. High strain rate compressive deformation behavior of an additively manufactured stainless steel [J]. Additive Manufacturing, 2018, 9(24): 432–439. DOI: 1010.1016/j.addma.2018.09.16.
|
[15] |
丁利, 李怀学, 王玉岱, 等. 热处理对激光选区熔化成形316不锈钢组织与拉伸性能的影响 [J]. 中国激光, 2015, 42(4): 187–193. DOI: 10.3788/CJL201542.0406003.
DING Li, LI Huaixue, WANG Yudai, et al. Heat treatment on microstructure and tensile strength of 316 stainless steel by selective laser melting [J]. Chinese Journal of Lasers, 2015, 42(4): 187–193. DOI: 10.3788/CJL201542.0406003.
|
[16] |
WOOD P, SCHLEY C A, WILLIAMS M A, et al. A method to calibrate a specimen with strain gauges to measure force over the full-force range in high rate testing [C] // SCHLEY C A. DYMAT 2009: 9th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading. Belgium: Experimental Techniques?, 2009: 265−273. DOI: 10.1051/dymat/2009036.
|
[17] |
申海艇, 蒋招绣, 王贝壳, 等. 基于超高速相机的数字图像相关性全场应变分析在SHTB实验中的应用 [J]. 爆炸与冲击, 2017, 37(1): 15–20. DOI: 10.11883/1001-1455(2017)01-0015-06.
SHEN Haiting, JIANG Zhaoxiu, WANG Beike, et al. Full field strain measurement in split Hopkinson tension bar experiments by using ultra-high-speed camera with digital image correlation [J]. Explosion and Shock Waves, 2017, 37(1): 15–20. DOI: 10.11883/1001-1455(2017)01-0015-06.
|
[18] |
PIERRON F, SUTTON M A, TIWARI V. Ultra high speed DIC and virtual fields method analysis of a three point bending impact test on an aluminum bar [J]. Experimental Mechanics, 2011, 51(4): 537–563. DOI: 10.1007/s11340-010-9402-y.
|
[19] |
王楠, 李恩普, 汤忠斌, 等. 二维数字图像相关方法的拉伸实验误差分析 [J]. 光学仪器, 2012, 34(3): 5–12. DOI: 10.3969/j.issn.1005-5630.2012.03.002.
WANG Nan, LI Enpu, TANG Zhongbin, et al. An investigation of the experimental error of 2-D DIC method applied to tensile strain measurement [J]. Optical Instruments, 2012, 34(3): 5–12. DOI: 10.3969/j.issn.1005-5630.2012.03.002.
|
[20] |
CHEVRIER P, KLEPACZKO J R. Spall fracture: mechanical and micro-structural aspects [J]. Engineering Fracture Mechanics, 1999, 63(3): 273–294. DOI: 10.1016/S0013-7944(99)00022-3.
|
[21] |
张万甲, 曾元金. 不锈钢(00Cr18Ni9)动态累积损伤研究 [J]. 爆炸与冲击, 1999, 19(4): 309–314. doi: 10.3321/j.issn:1001-1455.1999.04.004
ZHANG Wanjia, ZENG Yuanjin. Study on the dynamic accumulation-damage for the stainless steel (00Cr18Ni9) [J]. Explosion and Shock Waves, 1999, 19(4): 309–314. doi: 10.3321/j.issn:1001-1455.1999.04.004
|
[22] |
WENG J, TAN H, WANG X, et al. Optical-fiber interferometer for velocity measurements with picosecond resolution [J]. Applied Physics Letters, 2006, 89(11): 111101-0. DOI: 10.1063/1.2335948.
|
[23] |
CLAUSEN B, BROWN D W, CARPENTER J S, et al. Deformation behavior of additively manufactured GP1 stainless steel [J]. Materials Science and Engineering: A, 2017, 696(4): 331–340. DOI: 10.1016/j.msea.2017.04.081.
|
[24] |
刘超, 王磊, 刘杨. 应变速率对Q&P钢拉伸变形行为的影响 [J]. 特钢技术, 2012, 18(3): 18–22. DOI: 10.3969/j.issn.1674-0971.2012.03.007.
LIU Chao, WANG Lei, LIU Yang. Effect of strain rates on tensile deformation behavior of quenching and partitioning steel [J]. Special Steel Technology, 2012, 18(3): 18–22. DOI: 10.3969/j.issn.1674-0971.2012.03.007.
|
[25] |
COWPER G R, SYMONDS P S. Strain hardening and strain rate effects in the impact loading of cantilever beams [R] // Applied Mathematics Report. Brown University, 1958.
|
[26] |
蒋招绣, 辛铭之, 王永刚. 高强铝合金的动态拉伸断裂行为实验研究 [J]. 固体力学学报, 2014, 35(6): 552–558. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2014.06.007.
JIANG Zhaoxiu, XIN Mingzhi, WANG Yonggang. Experimental study on dynamic tensile fracture of aluminum alloy [J]. Chinese Journal of Solid Mechanics, 2014, 35(6): 552–558. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2014.06.007.
|
[27] |
彭辉, 李平, 裴晓阳, 等. 平面冲击下铜的拉伸应变率相关特性研究 [J]. 物理学报, 2014, 63(19): 281–287. DOI: 10.7498/aps.63.196202.
PENG Hui, LI Ping, PEI Xiaoyang, et al. Rate-dependent characteristics of copper under plate impact [J]. Acta Physica Sinica, 2014, 63(19): 281–287. DOI: 10.7498/aps.63.196202.
|
[28] |
ANTOUN T, SEAMAN L, CURRAN D R, et al. Spall fracture [M]. New York, USA: Springer, 2003: 90−92. DOI: 10.1007/b97226.
|