Volume 40 Issue 1
Jan.  2020
Turn off MathJax
Article Contents
CAO Xiang, TANG Jiani, WANG Zhu, ZHENG Yuxuan, ZHOU Fenghua. Effect of damage evolution on the fragmentation process of ductile metals[J]. Explosion And Shock Waves, 2020, 40(1): 013102. doi: 10.11883/bzycj-2019-0041
Citation: CAO Xiang, TANG Jiani, WANG Zhu, ZHENG Yuxuan, ZHOU Fenghua. Effect of damage evolution on the fragmentation process of ductile metals[J]. Explosion And Shock Waves, 2020, 40(1): 013102. doi: 10.11883/bzycj-2019-0041

Effect of damage evolution on the fragmentation process of ductile metals

doi: 10.11883/bzycj-2019-0041
  • Received Date: 2019-02-01
  • Rev Recd Date: 2019-05-16
  • Available Online: 2019-12-25
  • Publish Date: 2020-01-01
  • Solids will be broken into multiple fragments under dynamic tension loadings. The Mott-Grady model based on linear cohesive fracture can predict the lower limits of average fragment size during fragmentation process. However, the damage evolution of ductile materials is diversified. In this paper, the ductile fracture processes influenced by different damage evolutions were studied by numerical simulation. Using ABAQUS/Explicit dynamic finite element, we reproduced the tensile fracture process of ductile metal bar (45 steel) at high strain rates. The effects of linear/nonlinear damage evolutions on ductile fracture process were analyzed. The numerical results show that the damage evolution law has a significant influence on the fragmentation process of ductile metals. As the nonlinear parameter increases, the number of fragments decreases during fragmentation process. The Grady-Kipp formula can still reasonably predict the lower limits of the ductile fragment sizes in a certain range. When the non-linear index α was far greater than zero, there are conspicuous deviations between the numerical experiments and the Grady-Kipp model under the low impact loading. With increasing strain rate, the results by the numerical simulations are in agreement with the ones by the Grady-Kipp theoretical model.
  • loading
  • [1]
    GRADY D E, BENSON D A. Fragmentation of metal rings by electromagnetic loading [J]. Experimental Mechanics, 1983, 23(4): 393–400. DOI: 10.1007/BF02330054.
    [2]
    GRADY D E, KIPP M E. Experimental measurement of dynamic failure and fragmentation properties of metals [J]. International Journal of Solids and Structures, 1995, 32(17−18): 2779–2791. DOI: 10.1016/ 0020-7683(94)00297-a.
    [3]
    GRADY D E, KIPP M E. Fragmentation properties of metals [J]. International Journal of Impact Engineering, 1997, 20(1−5): 293–308. DOI: 10.1016/ S0734-743X(97)87502-1.
    [4]
    MOTT N F. A theory of the fragmentation of shells and bombs [M]//GRADY D. Fragmentation of Rings and Shells. Berlin, Germany: Springer, 2006: 243–294. DOI: 10.1007/978-3-540-27145-1_11
    [5]
    MOTT N F. Fragmentation of shell cases [J]. Proceedings of the Royal Society of London: Series A: Mathematical and Physical Sciences, 1947, 189(1018): 300–308. DOI: 10.1098/rspa.1947.0042.
    [6]
    KIPP M E, GRADY D E. Dynamic fracture growth and interaction in one dimension [J]. Journal of the Mechanics and Physics of Solids, 1985, 33(4): 399–415. DOI: 10.1016/0022-5096(85)90036-5.
    [7]
    GRADY D E. Fragmentation of rings and shells: the legacy of N. F. Mott [M]. Berlin: Springer, 2006. DOI: 10.1007/b138675
    [8]
    ZHANG H, RAVI-CHANDAR K. Dynamic fragmentation of ductile materials [J]. Journal of Physics D: Applied Physics, 2009, 42(21): 214010. DOI: 10.1088/0022-3727/42/21/214010.
    [9]
    LEVY S, MOLINARI J F, VICARI I I, DAVISON A C. Dynamic fragmentation of a ring: predictable fragment mass distributions [J]. Physical Review E, 2010, 82(6): 066105. DOI: 10.1103/PhysRevE.82.066105.
    [10]
    陈磊, 周风华, 汤铁钢. 韧性金属圆环高速膨胀碎裂过程的有限元模拟 [J]. 力学学报, 2011, 43(5): 861–870. DOI: 10.6052/0459-1879-2011-5-lxxb2010-675.

    CHEN L, ZHOU F H, TANG T G. Finite element simulations of the high velocity expansion and fragmentation of ductile metallic rings [J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5): 861–870. DOI: 10.6052/0459-1879-2011-5-lxxb2010-675.
    [11]
    郑宇轩, 胡时胜, 周风华. 韧性材料的高应变率拉伸碎裂过程及材料参数影响 [J]. 固体力学学报, 2012, 33(4): 358–369. DOI: 10.3969/j.issn.0254-7805.2012.04.003.

    ZHENG Y X, HU S S, ZHOU F H. High strain rate tensile fragmentation process of ductile materials and the effects of material parameters [J]. Chinese Journal of Solid Mechanics, 2012, 33(4): 358–369. DOI: 10.3969/j.issn.0254-7805.2012.04.003.
    [12]
    GAO X, WANG T, KIM J. On ductile fracture initiation toughness: effects of void volume fraction, void shape and void distribution [J]. International Journal of Solids and Structures, 2005, 42(18−19): 5097–5117. DOI: 10.1016/j.ijsolstr.2005.02.028.
    [13]
    周风华, 郭丽娜, 王礼立. 脆性固体碎裂过程中的最快卸载特性 [J]. 固体力学学报, 2010, 31(3): 286–295. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2010.03.009.

    ZHOU F H, GUO L N, WNAG L L. The rapidest unloading characteristics in the fragmentation process of brittle solids [J]. Chinese Journal of Solid Mechanics, 2010, 31(3): 286–295. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2010.03.009.
    [14]
    GILLES D, JORIS V, DON-PIERRE Z, et al. Stress release waves in plastic solids [J]. Journal of the Mechanics and Physics of Solids, 2019, 128: 21–31. DOI: 10.1016/j.jmps.2019.03.021.
    [15]
    郑宇轩, 周风华, 余同希. 动态碎裂过程中的最快速卸载现象 [J]. 中国科学: 技术科学, 2016, 46(4): 332–338. DOI: 10.1360/N092016-00012.

    ZHENG Y X, ZHOU F H, YU T X. The rapidest unloading in dynamic fragmentation events [J]. Scientia Sinica Technologica, 2016, 46(4): 332–338. DOI: 10.1360/N092016-00012.
    [16]
    郑宇轩, 周风华, 胡时胜, 等. 固体的冲击拉伸碎裂 [J]. 力学进展, 2016, 46(12): 506–540. DOI: 10.6052/1000-0992-16-004.

    ZHENG Y X, ZHOU F H, HU S S, et al. Fragmentation of solids under impact tension [J]. Advances in Mechanics, 2016, 46(12): 506–540. DOI: 10.6052/1000-0992-16-004.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (5369) PDF downloads(94) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return