Volume 39 Issue 8
Aug.  2019
Turn off MathJax
Article Contents
HU Xuelong, LI Keqing, QU Shijie. The elastoplastic constitutive model of rock and its numerical implementation based on unified strength theory[J]. Explosion And Shock Waves, 2019, 39(8): 083108. doi: 10.11883/bzycj-2019-0044
Citation: HU Xuelong, LI Keqing, QU Shijie. The elastoplastic constitutive model of rock and its numerical implementation based on unified strength theory[J]. Explosion And Shock Waves, 2019, 39(8): 083108. doi: 10.11883/bzycj-2019-0044

The elastoplastic constitutive model of rock and its numerical implementation based on unified strength theory

doi: 10.11883/bzycj-2019-0044
  • Received Date: 2019-02-18
  • Rev Recd Date: 2019-05-10
  • Available Online: 2019-06-25
  • Publish Date: 2019-08-01
  • Based on the theory of elastoplastic mechanics, the rock elastoplastic constitutive model considering hardening/softening behavior and strain rate effect is established with the uniform strength criterion as the yield criterion. Fortran language was used to program the elastoplastic constitutive model through the user-defined material interface (Umat) of LS-DYNA. The elastoplastic constitutive model is verified by uniaxial compression test and SHPB test of rock, and the results show that the elastoplastic constitutive model can reflect the mechanical behavior of rock under quasi-static and dynamic conditions.
  • loading
  • [1]
    俞茂宏. 岩土类材料的统一强度理论及其应用 [J]. 岩土工程学报, 1994, 16(2): 1–9. DOI: 10.3321/j.issn:1000-4548.1994.02.001.

    YU Maohong. Unified strength theory for geomaterials and its applications [J]. Chinese Journal of Geotechnical Engineering, 1994, 16(2): 1–9. DOI: 10.3321/j.issn:1000-4548.1994.02.001.
    [2]
    张金涛, 林天健. 三轴实验中岩石的应力状态和破坏性质 [J]. 力学学报, 1979(2): 99–105. DOI: 10.6052/0459-1879-1979-2-1979-015.

    ZHANG Jintao, LIN Tianjian. Stress consditions and the variation of rupture characteristics of a rock as shown by triaxial tests [J]. Chinese Journal of Theoretical and Applied Mechanics, 1979(2): 99–105. DOI: 10.6052/0459-1879-1979-2-1979-015.
    [3]
    潘晓明, 孔娟, 杨钊, 等. 统一弹塑性本构模型在ABAQUS中的开发与应用 [J]. 岩土力学, 2010, 31(4): 1092–1098. DOI: 10.3969/j.issn.1000-7598.2010.04.014.

    PAN Xiaoming, KONG Juan, YANG Zhao, et al. Secondary development and application of unified elastoplastic constitutive model to ABAQUS [J]. Rock and Soil Mechanics, 2010, 31(4): 1092–1098. DOI: 10.3969/j.issn.1000-7598.2010.04.014.
    [4]
    廖红建, 吴建英, 黄飞强, 等. 用统一强度理论求解岩土材料的动力强度参数 [J]. 岩石力学与工程学报, 2003, 22(12): 1994–2000. DOI: 10.3321/j.issn:1000-6915.2003.12.009.

    LIAO Hongjian, WU Jianying, HUANG Feiqiang, et al. Determination of dynamic strength parameters of geomaterials based on unified strength theory [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(12): 1994–2000. DOI: 10.3321/j.issn:1000-6915.2003.12.009.
    [5]
    李杭州, 廖红建, 盛谦, 等. 基于统一强度理论的软岩损伤统计本构模型研究 [J]. 岩石力学与工程学报, 2006, 25(7): 1332–1336.

    LI Hangzhou, LIAO Hongjian, SHENG Qian, et al. Analysis of influence of discontinuous plane on strength of rock mass based on unified strength theory [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(7): 1332–1336.
    [6]
    张强, 王红英, 王水林, 等. 基于统一强度理论的破裂围岩劣化弹塑性分析 [J]. 煤炭学报, 2010, 35(3): 381–386. DOI: 10.13225/j.cnki.jccs.2010.03.014.

    ZHANG Qiang, WANG Hongying, WANG Shuilin, et al. Deterioration elastoplastic analysis of cracked surrounding rocks based on unified strength theory [J]. Journal of China Coal Society, 2010, 35(3): 381–386. DOI: 10.13225/j.cnki.jccs.2010.03.014.
    [7]
    曹雪叶, 赵均海, 张常光. 基于统一强度理论的 FGM 冻结壁弹塑性应力分析 [J]. 岩土力学, 2017, 38(3): 102–106. DOI: 10.16285/j.rsm.2017.03.000.

    CAO Xueye, ZHAO Junhai, ZHANG Changguang. Elastoplastic stress analysis of functionally graded material frozen soil wall based on unified strength theory [J]. Rock and Soil Mechanics, 2017, 38(3): 102–106. DOI: 10.16285/j.rsm.2017.03.000.
    [8]
    YU M H, HE L N. A new model and theory on yield and failure of materials under the complex stress state [C] // Jono M, Inoue T. Mechanical Behaviour of Materials-6. Oxford: Pergamon, 1991: 841−846.
    [9]
    张传庆, 周辉, 冯夏庭. 统一弹塑性本构模型在 FLAC3D 中的计算格式 [J]. 岩土力学, 2008, 29(3): 596–602. DOI: 10.3969/j.issn.1000-7598.2008.03.005.

    ZHANG Chuanqing, ZHOU Hui, FENG Xiating. Numerical format of elastoplastic constitutive model based on the unified strength theory in FLAC3D [J]. Rock and Soil Mechanics, 2008, 29(3): 596–602. DOI: 10.3969/j.issn.1000-7598.2008.03.005.
    [10]
    李杭州, 廖红建, 宋丽, 等. 双剪统一弹塑性应变软化本构模型研究 [J]. 岩石力学与工程学报, 2014, 33(4): 720–728. DOI: 10.16285/j.rsm.2006.11.027.

    LI Hangzhou, LIAO hongjian, SONG Li, et al. Twin shear unified elastoplastic constitutive model considering strain softening behavior [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(4): 720–728. DOI: 10.16285/j.rsm.2006.11.027.
    [11]
    门建兵, 蒋建伟, 王树有. 爆炸冲击数值模拟技术基础 [M]. 北京理工大学出版社, 2015, 7.

    MEN Jianbing, JIANG Jianwei, WANG Shuyou. Fundamentals of numerical simulation for explosion and shock problems [M]. Beijing Institute of Technology Press, 2015, 7.
    [12]
    LI H Z, XIONG G D, ZHAO C P. An elasto-plastic constitutive model for soft rock considering mobilization of strength [J]. Transactions of Nonferrous Metals Society of China, 2016, 26(3): 822–834. DOI: 10.1016/S1003-6326(16)64173-0.
    [13]
    POURHOSSEINI O, SHABANIMASHCOOL M. Development of an elasto plastic constitutive model for intact rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 66: 1–12. DOI: 10.1016/j.ijrmms.2013.11.010.
    [14]
    WANG J C, WANG Z H, YANG S L. A coupled macro-and meso-mechanical model for heterogeneous coal [J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 94: 64–81. DOI: 10.1016/j.ijrmms.2017.03.002.
    [15]
    ZHAO J. Applicability of Mohr-Coulomb and Hoek-Brown strength criteria to the dynamic strength of brittle rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(7): 1115–1121. DOI: 10.1016/S1365-1609(00)00049-6.
    [16]
    LU D C, WANG G S, DU X L. A nonlinear dynamic uniaxial strength criterion that considers the ultimate dynamic strength of concrete [J]. International Journal of Impact Engineering, 2017, 103: 124–137. DOI: 10.1016/j.ijimpeng.2017.01.011.
    [17]
    YU M H, YANG S Y, FAN S C, et al. Unified elasto-plastic associated and non-associated constitutive model and its engineering applications [J]. Computers and structures, 1999, 71: 627–636. DOI: 10.1016/S0045-7949(98)00306-X.
    [18]
    ZHANG J C. Experimental and modelling investigations of the coupled elastoplastic damage of a quasi-brittle rock [J]. Rock Mechanics and Rock Engineering, 2018, 51(2): 465–478. DOI: 10.1007/s00603-017-1322-z.
    [19]
    FREW D J, FORRESTAL M J, CHEN W. A split Hopkinson pressure bar technique to determine compressive stress-strain data for rock materials [J]. Experimental Mechanics, 2001, 46(1): 40–46. DOI: 10.1007/BF02323102.
    [20]
    FREW D J. Dynamic response of brittle materials from penetration and split Hopkison pressure bar experiments[D]. Arizona State University, 2000.
    [21]
    LIAO Z Y, ZHU J B, XIA K W. Determination of dynamic compressive and tensile behavior of rocks from numerical tests of split Hopkinson pressure and tension bars [J]. Rock Mechanics and Rock Engineerings, 2016, 49(10): 3917–3934. DOI: 10.1007/s00603-016-0954-8.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (6112) PDF downloads(120) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return