Volume 40 Issue 2
Jan.  2020
Turn off MathJax
Article Contents
TAN Rui, LI Haiyang, HUANG Junyu. Investigations on the fragment morphology and fracture mechanisms of Al2O3 ceramics under dynamic and quasi-static compression[J]. Explosion And Shock Waves, 2020, 40(2): 023103. doi: 10.11883/bzycj-2019-0050
Citation: TAN Rui, LI Haiyang, HUANG Junyu. Investigations on the fragment morphology and fracture mechanisms of Al2O3 ceramics under dynamic and quasi-static compression[J]. Explosion And Shock Waves, 2020, 40(2): 023103. doi: 10.11883/bzycj-2019-0050

Investigations on the fragment morphology and fracture mechanisms of Al2O3 ceramics under dynamic and quasi-static compression

doi: 10.11883/bzycj-2019-0050
  • Received Date: 2019-02-22
  • Rev Recd Date: 2019-04-01
  • Available Online: 2019-12-25
  • Publish Date: 2020-02-01
  • In order to investigate the mechanical response and damage mechanisms of Al2O3 ceramics, quasi-static and dynamic compression experiments are carried out on Al2O3 samples with a material test system and split Hopkinson pressure bar, respectively. In-situ optical imaging is adopted to capture the failure process of samples; synchrotron radiation CT and scanning electron microscopy (SEM) are, respectively, used to characterize the size and shape of recovered fragments and the micro fracture modes. Bulk strength data show that the compressive strength of Al2O3 ceramics conforms to a Weibull distribution and increases in a power law with the strain rate. In-situ optical imaging and SEM recovery analysis reveal that there exist obvious differences in crack nucleation and propagation between quasi-static and dynamic loading. Intergranular fracture around initial flaws is more likely to occur under quasi-static loading, macroscopically leading to fewer splitting cracks which tend to propagate along the loading direction and penetrate the sample; while transgranular fracture dominates micro cracking under dynamic loading, and the splitting cracks increases in number and interact with each other to form a large number of bifurcated, secondary cracks during the propagation process, which increases the crack density of sample. This is consistent with the three-dimensional CT characterizations. The mean of sphericity, convexity, elongation index and flatness index of fragments increase linearly with the logarithm of strain rate. The change in failure mode ultimately leads to the significantly enhanced strain rate sensitivity of ceramic materials at high strain rates.
  • loading
  • [1]
    朱志斌, 郭志军, 刘英, 等. 氧化铝陶瓷的发展与应用 [J]. 陶瓷, 2003, 161(1): 5–8. DOI: 10.3969/j.issn.1002-2872.2003.01.001.

    ZHU Z B, GUO Z J, LIU Y, et al. Development and application of alumina ceramic [J]. Ceramics, 2003, 161(1): 5–8. DOI: 10.3969/j.issn.1002-2872.2003.01.001.
    [2]
    胡玉龙,蒋凡. 装甲陶瓷的发展现状和趋势 [J]. 兵器材料科学与工程, 1996, 19(5): 37–42. DOI: 10.14024/j.cnki.1004 -244x.1996.05.008.

    HU Y L, JIANG F. Development and current status of armor ceramics [J]. Ordnance Material Science and Engineering, 1996, 19(5): 37–42. DOI: 10.14024/j.cnki.1004 -244x.1996.05.008.
    [3]
    李聪. 刚玉球/铝合金复合材料的制备及其抗弹性能研究[D]. 南京: 南京航空航天大学, 2008: 6−7. DOI: 10.7666/d.d052470.
    [4]
    STRAßBURGER E. Ballistic testing of transparent armour ceramics [J]. Journal of the European Ceramic Society, 2009, 29(2): 267–273. DOI: 10.1016/j.jeurceramsoc.2008.03.049.
    [5]
    吴燕平, 燕青芝. 防弹装甲中的陶瓷材料 [J]. 兵器材料科学与工程, 2017, 40(4): 141–146. DOI: 10.14024/j.cnki.1004-244x.20170630.001.

    WU Y P, YAN Q Z. Application of ceramics in armor protection [J]. Ordnance Material Science and Engineering, 2017, 40(4): 141–146. DOI: 10.14024/j.cnki.1004-244x.20170630.001.
    [6]
    唐录成. 平面冲击加载下A95陶瓷动态力学性能研究[D]. 重庆: 重庆大学, 2009: 1−10. DOI: 10.7666/d.y1666484.
    [7]
    JIAO T, LI Y, RAMESH K T, et al. High rate response and dynamic failure of structural ceramics [J]. International Journal of Applied Ceramic Technology, 2010, 1(3): 243–253. DOI: 10.1111/j.1744-7402.2004.tb00176.x.
    [8]
    KIMBERLEY J, RAMESH K T, DAPHALAPURKAR N P. A scaling law for the dynamic strength of brittle solids [J]. Acta Materialia, 2013, 61(9): 3509–3521. DOI: 10.1016/j.actamat.2013.02.045.
    [9]
    SZLUFARSKA I, RAMESH K T, WARNER D H. Simulating mechanical behavior of ceramics under extreme conditions [J]. Annual Review of Materials Research, 2013, 43(1): 131–156. DOI: 10.1146/annurev-matsci-071312-121714.
    [10]
    JOHNSON G R, HOLMQUIST T J. An improved computational constitutive model for brittle materials [J]. American Institute of Physics, 1994, 309(1): 981–984. DOI: 10.1063/1.46199.
    [11]
    杨震琦, 庞宝君, 王立闻, 等. JH-2模型及其在Al2O3陶瓷低速撞击数值模拟中的应用 [J]. 爆炸与冲击, 2010, 30(5): 463–471. DOI: 10.11883/1001-1455(2010)05-0463-09.

    YANG Z Q, PANG B J, WANG L W, et al. JH-2 model and its application to numerical simulation on Al2O3 ceramic under low-velocity impact [J]. Explosion and Shock Waves, 2010, 30(5): 463–471. DOI: 10.11883/1001-1455(2010)05-0463-09.
    [12]
    李英雷, 胡时胜, 李英华. A95陶瓷材料的动态压缩测试研究 [J]. 爆炸与冲击, 2004, 24(3): 233–239.

    LI Y L, HU S S, LI Y H. Research on dynamic behaviors of A95 ceramics under compression [J]. Explosion and Shock Waves, 2004, 24(3): 233–239.
    [13]
    张晓晴, 姚小虎, 宁建国, 等. Al2O3陶瓷材料应变率相关的动态本构关系研究 [J]. 爆炸与冲击, 2004, 24(3): 226–232.

    ZHANG X Q, YAO X H, NING J G, et al. A study on the strain-rate dependent dynamic constitutive equation of Al2O3 ceramics [J]. Explosion and Shock Waves, 2004, 24(3): 226–232.
    [14]
    刘荫秋, 王正国, 马玉媛. 创伤弹道学[M]. 北京: 人民军医出版社, 1991: 76−77.
    [15]
    靳晓庆. 陶瓷材料在准静态和冲击压缩载荷作用下的动态碎裂过程[D]. 宁波: 宁波大学, 2014: 27−57.
    [16]
    周风华, 王永刚. 影响冲击载荷下脆性材料碎片尺度的因素 [J]. 爆炸与冲击, 2008, 28(4): 298–303. DOI: 10.11883/1001-1455(2008)04-0298-06.

    ZHOU F H, WANG Y G. Factors controlling sizes of brittle fragments due to impact loadings [J]. Explosion and Shock Waves, 2008, 28(4): 298–303. DOI: 10.11883/1001-1455(2008)04-0298-06.
    [17]
    周风华, 郭丽娜, 王礼立. 脆性固体碎裂过程中的最快卸载特性 [J]. 固体力学学报, 2010, 31(3): 129–133. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2010.03.009.

    ZHOU F H, GUO L N, WANG L L. The rapidest unloading characteristics in the fragmentation process of brittle solids [J]. Chinese Journal of Solid Mechanics, 2010, 31(3): 129–133. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2010.03.009.
    [18]
    SHAN J F, XU S L, LIU Y G, et al. Dynamic breakage of glass sphere subjected to impact loading [J]. Powder Technology, 2018, 330: 317–329. DOI: 10.1016/j.powtec.2018.02.009.
    [19]
    HUANG J Y, E J C, HUANG J W, et al. Dynamic deformation and fracture of single crystal silicon: fracture modes, damage laws, and anisotropy [J]. Acta Materialia, 2016, 114: 136–145. DOI: 10.1016/j.actamat.2016.05.022.
    [20]
    许峰, 胡小方, 卢斌, 等. 碳化硼固相烧结微观结构演化的同步辐射CT观测 [J]. 无机材料学报, 2009, 24(1): 175–181. DOI: 10.3724/SP.J.1077.2009.00175.

    XU F, HU X F, LU B, et al. Microstructures-evolution observation of boron carbide ceramic during sintering process by synchrotron radiation X-ray computed tomography [J]. Journal of Inorganic Materials, 2009, 24(1): 175–181. DOI: 10.3724/SP.J.1077.2009.00175.
    [21]
    SHENG J, LUMING S, FRANÇOIS G, et al. Energy dissipation from two-glass-bead chains under impact [J]. International Journal of Impact Engineering, 2018, 114: 160–168. DOI: 10.1016/j.ijimpeng.2018.01.002.
    [22]
    BIE B X, HUANG J Y, FAN D, et al. Orientation-dependent tensile deformation and damage of a T700 carbon fiber/epoxy composite: a synchrotron-based study [J]. Carbon, 2017, 121: 127–133. DOI: 10.1016/j.carbon.2017.05.083.
    [23]
    KONG D, FONSECA J. Quantification of the morphology of shelly carbonate sands using 3D images [J]. Géotechnique, 2017, 68(3): 1–13. DOI: 10.1680/jgeot.16.p.278.
    [24]
    RAVICHANDRAN G, SUBHASH G. Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar [J]. Journal of the American Ceramic Society, 1994, 77(1): 263–267. DOI: 10.1111/j.1151-2916.1994.tb06987.x.
    [25]
    SONG B, CHEN W. Loading and unloading split hopkinson pressure bar pulse-shaping techniques for dynamic hysteretic loops [J]. Experimental Mechanics, 2004, 44(6): 622–627. DOI: 10.1007/BF02428252.
    [26]
    GURSOY D, DE C F, XIAO X H, et al. TomoPy: a framework for the analysis of synchrotron tomographic data [J]. Journal of Synchrotron Radiation, 2014, 21(5): 1188–1193. DOI: 10.1107/S1600577514013939.
    [27]
    FOK S L, MITCHELL B C, SMART J, et al. A numerical study on the application of Weibull theory to brittle materials [J]. Engineering Fracture Mechanics, 2001, 68(10): 1171–1179. DOI: 10.1016/S0013-7944(01)00022-4.
    [28]
    HUANG J, XU S, YI H, et a1. Size effect on the compression breakage strengths of glass particles [J]. Powder Technology, 2014, 268(1): 86–94. DOI: 10.1016/j.powtec.2014.08.037.
    [29]
    KELEŞ Ö, GARCÍA R E, BOWMAN K J. Deviations from Weibull statistics in brittle porous materials [J]. Acta Materialia, 2013, 61(19): 7207–7215. DOI: 10.1016/j.actamat.2013.08.025.
    [30]
    STAEHLER J M, PREDEBON W W, PLETKA B J, et al. Micromechanisms of deformation in high-purity hot-pressed alumina [J]. Materials Science & Engineering: A, 2000, 291(1-2): 37–45. DOI: 10.1016/s0921-5093(00)00976-x.
    [31]
    THEODOROU D N, SUTER U W. Shape of unperturbed linear polymers: polypropylene [J]. Macromolecules, 1985, 18(6): 1206–1214. DOI: 10.1021/ma00148a028.
    [32]
    FAROOQUE T M, CAMP C H, TISON C K, et al. Measuring stem cell dimensionality in tissue scaffolds [J]. Biomaterials, 2014, 35(9): 2558–2567. DOI: 10.1016/j.biomaterials.2013.12.092.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (6504) PDF downloads(118) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return