Volume 40 Issue 2
Jan.  2020
Turn off MathJax
Article Contents
SHEN Fei, WANG Hui, QU Kepeng, ZHANG Gao. Expansion and fracture characteristics of oxygen-free copper tubes with different grain sizes under detonation loading[J]. Explosion And Shock Waves, 2020, 40(2): 022201. doi: 10.11883/bzycj-2019-0063
Citation: SHEN Fei, WANG Hui, QU Kepeng, ZHANG Gao. Expansion and fracture characteristics of oxygen-free copper tubes with different grain sizes under detonation loading[J]. Explosion And Shock Waves, 2020, 40(2): 022201. doi: 10.11883/bzycj-2019-0063

Expansion and fracture characteristics of oxygen-free copper tubes with different grain sizes under detonation loading

doi: 10.11883/bzycj-2019-0063
  • Received Date: 2019-03-01
  • Rev Recd Date: 2019-09-17
  • Available Online: 2019-12-25
  • Publish Date: 2020-02-01
  • Two kinds of soft oxygen-free copper tubes with average grain size of 100−300 micron and 20−30 micron were used to fabricate standard copper tubes for $\varnothing $25 mm cylinder test. The differences of expansion displacement and specific kinetic energy curves of the two kinds of copper tubes under JO-159 loading were compared using high-speed scanning photography. The fracture process of the copper tube under JO-159 and TNT loading was obtained using framing photography, and the differences in fracture time, crack propagation direction and fragment shape were compared. The results show that under JO-159 loading, although the fine-grained copper tubes have good ductility, a small number of internal defects initiate obvious isolated growth holes, leading to slightly larger effective expansion displacement of copper tubes than that of the coarse-grained copper tubes, with a smaller relative deviation of the specific kinetic energy between the two kinds of copper tubes than 1%. There are many randomly-distributed holes when the coarse-grained copper tube is broken. With the increase of the explosive intensity, the number of holes increases. Cracks switch from longitudinal propagation mode into complex networked mode and fragments change from strip to fragmented shape. However, the fracture diameters under both conditions reach three times of the initial diameter, which meets the basic requirements of a cylinder test.
  • loading
  • [1]
    奥尔连科 Л П. 爆炸物理学: 上册[M]. 孙承纬, 译. 北京: 科学出版社, 2011: 404−405.
    [2]
    ESCOBEDO J P, DENNIS-KOLLER D, CERRETA E K, et al. Effects of grain size and boundary structure on the dynamic tensile response of copper [J]. Journal of Applied Physics, 2011, 110(3): 033513. DOI: 10.1063/1.3607294.
    [3]
    张凤国, 周洪强. 晶粒尺寸对延性金属材料层裂损伤的影响 [J]. 物理学报, 2013, 62(16): 164601. DOI: 10.7498/aps.62.164601.

    ZHANG F G, ZHOU H Q. Effects of grain size on the dynamic tensile damage of ductile polycrystalline metal [J]. Acta Physica Sinica, 2013, 62(16): 164601. DOI: 10.7498/aps.62.164601.
    [4]
    胡海波, 汤铁钢, 胡八一, 等. 金属柱壳在爆炸加载断裂中的单旋现象 [J]. 爆炸与冲击, 2004, 24(2): 97–107.

    HU H B, TANG T G, HU B Y, et al. An study of uniform shear bands orientation selection tendency on explosively loaded cylindrical shells [J]. Explosion and Shock Waves, 2004, 24(2): 97–107.
    [5]
    任国武, 郭昭亮, 汤铁钢, 等. 高应变率加载下金属柱壳断裂的实验研究 [J]. 兵工学报, 2016, 37(1): 77–82. DOI: 10.3969/j.issn.1000-1093.2016.01.012.

    REN G W, GUO Z L, TANG T G, et al. Experimental research on fracture of metal case under loading at high strain rate [J]. Acta Armamentrii, 2016, 37(1): 77–82. DOI: 10.3969/j.issn.1000-1093.2016.01.012.
    [6]
    李忠盛, 吴护林, 陈韵如, 等. 内爆炸载荷作用下7A55铝合金的动态性能及断裂行为 [J]. 爆炸与冲击, 2012, 32(2): 190–195. DOI: 10.11883/1001-1455(2012)02-0190-06.

    LI Z S, WU H L, CHEN Y R, et al. Dynamic properties and fracture behaviors of 7A55 aluminum alloy under explosive loading [J]. Explosion and Shock Waves, 2012, 32(2): 190–195. DOI: 10.11883/1001-1455(2012)02-0190-06.
    [7]
    SINGH M, SUNEJA H R, BOLA M S, et al. Dynamic tensile deformation and fracture of metal cylinders at high strain rates [J]. International Journal of Impact Engineering, 2002, 27(2): 939–954. DOI: 10.1016/s0734-743x(02)00002-7.
    [8]
    GOTO D M, BECKER R, ORZECHOWSKI T J, et al. Investigation of the fracture and fragmentation of explosively driven rings and cylinders [J]. International Journal of Impact Engineering, 2008, 35(12): 1547–1556. DOI: 10.1016/j.ijimpeng.2008.07.081.
    [9]
    郭昭亮, 范诚, 刘明涛, 等. 爆炸与电磁加载下无氧铜环、柱壳的断裂模式转变 [J]. 爆炸与冲击, 2017, 37(6): 1072–1079. DOI: 10.11883/1001-1455(2017)06-1072-08.

    GUO Z L, FAN C, LIU M T, et al. Fracture mode transition in expanding ring and cylindrical shell under electromagnetic and explosive loadings [J]. Explosion and Shock Waves, 2017, 37(6): 1072–1079. DOI: 10.11883/1001-1455(2017)06-1072-08.
    [10]
    REN G W, GUO Z L, FAN C, et al. Dynamic shear fracture of an explosively-driven metal cylindrical shell [J]. International Journal of Impact Engineer, 2016, 95(9): 35–39. DOI: 10.1016/j.ijimpeng.2016.04.012.
    [11]
    李亮亮, 沈飞, 王辉, 等. 晶粒细化对无氧铜动态力学性能的影响 [J]. 兵器材料科学与工程, 2019, 42(1): 22–25. DOI: 10.14024/j.cnki.1004-244x.20181023.002.

    LI L L, SHEN F, WANG H, et al. Effect of grain refinement on dynamic mechanical properties of oxygen-free copper [J]. Ordnance Material Science and Engineering, 2019, 42(1): 22–25. DOI: 10.14024/j.cnki.1004-244x.20181023.002.
    [12]
    董海山. 高能炸药及相关物性能[M]. 北京: 科学出版社, 1989: 146−149.
    [13]
    孙占峰, 赵锋, 谷岩, 等.炸药圆筒试验光学扫描和激光干涉联合测试方法: GJB 8381—2015 [S] // 四川绵阳: 中国工程物理研究院, 2015.
    [14]
    沈飞, 王辉, 罗一鸣. DNTF基同轴双元装药的爆轰波形及驱动性能 [J]. 含能材料, 2018, 26(7): 614–619. DOI: 10.11943/j.issn.1006-9941.2018.07.011.

    SHEN F, WANG H, LUO Y M. Detonation wave-shape and driving performance of coaxial binary charge of DNTF-based aluminized explosives [J]. Chinese Journal of Energetic Materials, 2018, 26(7): 614–619. DOI: 10.11943/j.issn.1006-9941.2018.07.011.
    [15]
    SOUERS P C, MINICH R. Cylinder test correction for copper work hardening and spall [J]. Propellants, Explosives, Pyrotechnics, 2015, 40(2): 238–245. DOI: 10.1002/prep.201400135.
    [16]
    SOUERS P C, LAUDERBACH L, GARZA R, et al. Upgraded analytical model of the cylinder test [J]. Propellants, Explosives, Pyrotechnics, 2013, 38(3): 419–424. DOI: 10.1002/prep.201200192.
    [17]
    韩立波. 铜缺陷熔化及其冲击力学行为的分子动力学模拟[D]. 合肥: 中国科技大学, 2010: 97−98.
    [18]
    KINSLOW R. High-velocity impact phenomena[M]. New York: Academic Press, 1970: 532.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (6039) PDF downloads(87) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return