LIU Yuan, PI Aiguo, YANG He, FENG Jikui, HUANG Fenglei. Study on similarity law of non-proportionally scaled penetration/perforation test[J]. Explosion And Shock Waves, 2020, 40(3): 033302. doi: 10.11883/bzycj-2019-0086
Citation: LIU Yuan, PI Aiguo, YANG He, FENG Jikui, HUANG Fenglei. Study on similarity law of non-proportionally scaled penetration/perforation test[J]. Explosion And Shock Waves, 2020, 40(3): 033302. doi: 10.11883/bzycj-2019-0086

Study on similarity law of non-proportionally scaled penetration/perforation test

doi: 10.11883/bzycj-2019-0086
  • Received Date: 2019-03-25
  • Rev Recd Date: 2019-04-27
  • Publish Date: 2020-03-01
  • Survivability and reliability assessment of components/key components on high-speed penetrating projectiles is a hot and difficult issue in the field of EPW development. Due to the cost limitation of prototype test, it is feasible to carry out non-proportionally scale experimental research by carrying prototype fuze components on scaled projectiles. Through the analysis of the process mechanism of a projectile penetrating concrete target, the analytic solution of rigid-body deceleration when the projectile penetrating the semi-infinite thick concrete target and the multi-layer thin concrete target are discussed respectively. From the point of view of similarity of rigid-body deceleration, the non-proportionally reduced-scale criterion of projectile is proposed when the traditional scaling scheme can not meet the requirements of similarity. The numerical results show that under the condition of penetrating semi-infinite thick concrete target, the rigid-body deceleration of the non-proportionally reduced-scale projectile can achieve the same conditions as which of the prototype projectile from the point of view of pulse width and amplitude; under the condition of penetrating multi-layered thin target, through reasonably setting the scale factor and adjusting the layout of the target plate and the initial velocity of the projectile. The pulse width and amplitude of the rigid-body deceleration in the reduced scale test can cover them in the prototype test. The rigid body deceleration characteristics obtained from scaled model test can provide reliable overload environment reference for missile projectile design.
  • [1]
    王树有, 顾晓辉, 赵有守. 混凝土侵彻试验相似准则验证分析 [J]. 南京理工大学学报(自然科学版), 2005, 29(5): 43–46. DOI: 10.3969/j.issn.1005-9830.2005.05.011.

    WANG S Y, GU X H, ZHAO Y H. Experimental analysis of simularity criteria for concrete penetration [J]. Journal of Nanjing University of Science and Technology (Natural Science), 2005, 29(5): 43–46. DOI: 10.3969/j.issn.1005-9830.2005.05.011.
    [2]
    王世虎. 硬目标侵彻中的加速度信号研究[D]. 北京: 北京理工大学, 2010: 5−30.
    [3]
    FORRESTAL M J, FREW D J, HICKERSON J P, et al. Penetration of concrete targets with deceleration-time measurements [J]. International Journal of Impact Engineering, 2003, 28(5): 479–497. DOI: 10.1016/S0734-743X(02)00108-2.
    [4]
    FREW D J, FORRESTAL M J, Cargile J D. The effect of concrete target diameter on proticle deceleration and penetration depth [J]. International Journal of Impact Engineering, 2006, 32(10): 1584–1594. DOI: 10.1016/j.ijimpeng.2005.01.012.
    [5]
    XU Y, KEER L M, LUK V K. Elastic-cracked model for penetration into un-reinforced concrete targets with ogival nose projectiles [J]. International Journal Solids Structures, 1997, 34(12): 1479–1491. DOI: 10.1016/S0020-7683(96)00099-6.
    [6]
    LUNDGREN. A strain gage based projectile health monitor and salvage indicating circuit for kinetic energy penetrating projectiles [C] // 53th NDIA Fuze Conferenc. Florida: NDIA, 2009.
    [7]
    刘小虎, 刘吉, 王乘, 等. 弹丸低速垂直侵彻无钢筋混凝土的实验研究 [J]. 爆炸与冲击, 1999, 19(4): 323–328.

    LIU X H, LIU J, WANG C, et al. Experimental studies on the projectile penetrating normally into a plain concrete [J]. Explosion and Shock Waves, 1999, 19(4): 323–328.
    [8]
    杨明, 杨志刚, 林祖森. 加速度计输出信号的信息组成 [J]. 中北大学学报(自然科学版), 2000, 21(1): 44–46. DOI: 10.3969/j.issn.1673-3193.2000.01.012.

    YANG M, YANG Z G, LIN Z S. Information compositions of the output signal of accelerometers [J]. Journal of North China Institute of Technology (Natural Science Edtition), 2000, 21(1): 44–46. DOI: 10.3969/j.issn.1673-3193.2000.01.012.
    [9]
    ZHANG W, CHEN L, XIONG J, et al. Ultra-high g deceleration-time measurement for the penetration into steel target [J]. International Journal of Impact Engineering, 2007, 34(3): 436–447. DOI: 10.1016/j.ijimpeng.2006.01.008.
    [10]
    徐鹏, 祖静, 范锦彪. 高速动能弹侵彻硬目标加速度测试技术研究 [J]. 振动与冲击, 2007, 26(11): 118–122. DOI: 10.3969/j.issn.1000-3835.2007.11.028.

    XU P, ZU J, FAN J B. Study on acceleration test technique of high velocity kinetic energy projectile penetrating into hard target [J]. Journal of Vibration and Shock, 2007, 26(11): 118–122. DOI: 10.3969/j.issn.1000-3835.2007.11.028.
    [11]
    何丽灵, 高进忠, 陈小伟, 等. 弹体高过载硬回收测量技术的实验探讨 [J]. 爆炸与冲击, 2013, 33(6): 608–612. DOI: 10.11883/1001-1455(2013)06-0608-0612.

    HE L L, GAO J Z, CHEN X W, et al. Experimental study on measurement technology for projectile deceleration [J]. Explosion and Shock Waves, 2013, 33(6): 608–612. DOI: 10.11883/1001-1455(2013)06-0608-0612.
    [12]
    周宁, 任辉启, 沈兆武, 等. 侵彻钢筋混凝土过程中弹丸过载特性的实验研究 [J]. 实验力学, 2006, 21(5): 572–578. DOI: 10.3969/j.issn.1001-4888.2006.05.005.

    ZHOU N, REN Q H, SHEN Z W, et al. Experimental study on overload characteristics of projectile penetrating reinforced concrete [J]. Journal of Experimental Mechanics, 2006, 21(5): 572–578. DOI: 10.3969/j.issn.1001-4888.2006.05.005.
    [13]
    黄家蓉, 刘瑞朝, 何翔, 等. 侵彻过载测试信号的数据处理方法 [J]. 爆炸与冲击, 2009, 29(5): 555–560. DOI: 10.11883/1001-1455(2009)05-0555-0560.

    HUANG J R, LIU R C, HE X, et al. A new data processing technique for measured penetration overloads [J]. Explosion and Shock Waves, 2009, 29(5): 555–560. DOI: 10.11883/1001-1455(2009)05-0555-0560.
    [14]
    赵生伟, 初哲, 李明. 抗侵彻过载战斗部装药安定性实验研究 [J]. 兵工学报, 2010, 31(S1): 284–287.

    ZHAO S W, CHU Z, LI M. Experiment investigation on stability of explosive in anti-overload warhead [J]. Acta Armamentarii, 2010, 31(S1): 284–287.
    [15]
    张会锁, 罗旭, 张远高. 弹体过载记录仪安装方式对侵彻过载峰值的影响分析 [J]. 中北大学学报(自然科学版), 2014, 35(3): 252–257. DOI: 10.3969/j.issn.1673-3193.2014.03.006.

    ZHANG H S, LUO X, ZHANG Y G. Research on the influence of the missile overload recorder installation style on penetration acceleration peak value [J]. Journal of North University of China (Natural Science Edition), 2014, 35(3): 252–257. DOI: 10.3969/j.issn.1673-3193.2014.03.006.
    [16]
    李计林, 徐文峥, 王晶禹, 等. 侵彻过程中弹载火工品过载特性数值模拟 [J]. 火工品, 2009(6): 30–34. DOI: 10.3969/j.issn.1003-1480.2009.06.010.

    LI J L, XU W J, WANG J Y, et al. The numerical simulation for overload characteristic of initiating explosive device on missile during penetration [J]. Initiators and Pyrotechnics, 2009(6): 30–34. DOI: 10.3969/j.issn.1003-1480.2009.06.010.
    [17]
    HALDAR A, HAMIEH H A. Local effect of solid missiles on concrete structures [J]. Journal of Structural Engineering, 1984, 110(5): 948–960. DOI: 10.1061/(ASCE)0733-9445(1984)110:5(948).
    [18]
    徐建波. 长杆射弹对混凝土的侵彻特性研究[D]. 湖南: 国防科学技术大学, 2001: 23−56.
    [19]
    杨超, 赵宝荣, 付克勤, 等. 缩比件弹体侵彻混凝土过程相似律研究 [J]. 兵器材料科学与工程, 2003(5): 3–7. DOI: 10.3969/j.issn.1004-244X.2003.05.001.

    YANG C, ZHAO B R, FU K Q, et al. Research on similarity law of penetration concrete of equiscale projectile [J]. Ordnance Material Science and Engineering, 2003(5): 3–7. DOI: 10.3969/j.issn.1004-244X.2003.05.001.
    [20]
    武海军, 黄风雷, 陈利, 等. 动能弹侵彻钢筋混凝土相似性分析 [J]. 兵工学报, 2007, 28(3): 276–280. DOI: 10.3321/j.issn:1000-1093.2007.03.005.

    WU H J, HUANG F L, CHEN L, et al. Similarity law analyses of penetration behavior in reinforced concrete [J]. Acta Armamentarii, 2007, 28(3): 276–280. DOI: 10.3321/j.issn:1000-1093.2007.03.005.
    [21]
    陈小伟, 张方举, 杨世全, 等. 动能深侵彻弹的力学设计(III): 缩比实验分析 [J]. 爆炸与冲击, 2006, 26(2): 105–114. DOI: 10.11883/1001-1455(2006)02-0105-0114.

    CHEN X W, ZHANG F J, YANG S Q, et al. Mechanics of structural design of epw (Ⅲ): investigations on the reduced-scale tests [J]. Explosion And Shock Waves, 2006, 26(2): 105–114. DOI: 10.11883/1001-1455(2006)02-0105-0114.
    [22]
    MEBAR Y. A method for scaling ballistic penetration phenomena [J]. International Journal of Impact Engineering, 1997, 19(9): 821–829. DOI: 10.1016/S0734-743X(97)00020-1.
    [23]
    YOUNG C W. Equations for predicting earth penetration by projectiles: an update: SAND88-0013 [R]. USA: Sandia National Laboratories, 1988.
    [24]
    LI Q M, CHEN X W. Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile [J]. International Journal of Impact Engineering, 2003, 28(1): 93–116. DOI: 10.1016/S0734-743X(02)00037-4.
    [25]
    朱彤. 结构动力模型相似问题及结构动力试验技术研究[D]. 大连: 大连理工大学, 2004.
    [26]
    MAI Y W, ATKINS A G. Crack propagation in non-proportionally scaled elastic structures [J]. International Journal of Mechanical Sciences, 1978, 20(7): 437–449. DOI: 10.1016/0020-7403(78)90033-4.
    [27]
    FORRESTAL M J, TZOU D Y. A spherical cavity-expansion penetration model for concrete targets [J]. International. Journal. Solids Structure, 1997, 34(31-32): 4127–4146. DOI: 10.1016/S0020-7683(97)00017-6.
    [28]
    MA Z F, DUAN Z P, OU Z C, et al. The experimental and theoretical research on attitude of projectile obliquely penetrating into thin concrete target [J]. Acta Armamentarii, 2015, 36(S1): 248–252. DOI: 10.15918/j.tbit1001-0645.2016.10.003.
    [29]
    王冰. 大长径比弹体侵彻混凝土的数值模拟研究[D]. 北京: 北京理工大学, 2012: 5−30.
    [30]
    PENG Y, WU H, FANG Q, et al. Residual velocities of projectiles after normally perforating the thin ultra-high performance steel fiber reinforced concrete slabs [J]. International Journal of Impact Engineering, 2016, 97(11): 1–9. DOI: 10.1016/j.ijimpeng.2016.06.006.
  • Relative Articles

    [1]ZHANG Xueyan, SUN Kai, LI Yuanlong, ZENG Feiyin, LI Guojie, WU Haijun. Cavity expansion model and penetration mechanism of concrete with different strengths based on the Ottosen yield condition[J]. Explosion And Shock Waves, 2023, 43(9): 091403. doi: 10.11883/bzycj-2022-0511
    [2]LEI Zhen, ZHANG Zhiyu, HUANG Yonghui, ZHOU Jiguo, BAI Ying. An investigation of energy consumption variation in rock blasting breaking with the resistance line[J]. Explosion And Shock Waves, 2021, 41(7): 075201. doi: 10.11883/bzycj-2020-0214
    [3]LIU Junwei, ZHANG Xianfeng, LIU Chuang, CHEN Haihua, XIONG Wei, TAN Mengting. Research progress of target resistance model of cavity expansion theory and its application[J]. Explosion And Shock Waves, 2021, 41(10): 101101. doi: 10.11883/bzycj-2021-0010
    [4]NIU Zhenkun, CHEN Xiaowei, DENG Yongjun, YAO Yong. Cavity expansion response of concrete targets under penetration[J]. Explosion And Shock Waves, 2019, 39(2): 023301. doi: 10.11883/bzycj-2017-0368
    [5]HU Xuelong, LI Keqing, QU Shijie. The elastoplastic constitutive model of rock and its numerical implementation based on unified strength theory[J]. Explosion And Shock Waves, 2019, 39(8): 083108. doi: 10.11883/bzycj-2019-0044
    [6]DENG Yongjun, SONG Wenjie, CHEN Xiaowei, YAO Yong. A dynamic cavity-expansion penetration model of compressible elastic-plastic response for reinforced concrete targets[J]. Explosion And Shock Waves, 2018, 38(5): 1023-1030. doi: 10.11883/bzycj-2017-0043
    [7]Hu Ying-guo, Lu Wen-bo, Chen Ming, Yan Peng. Determination of critical damage PPV near the blast hole of rock-mass[J]. Explosion And Shock Waves, 2015, 35(4): 547-554. doi: 10.11883/1001-1455(2015)04-0547-08
    [8]Leng Zhen-dong, Lu Wen-bo, Chen Ming, Yan Peng, Hu Ying-guo. Improved calculation model for the size of crushed zone around blasthole[J]. Explosion And Shock Waves, 2015, 35(1): 101-107. doi: 10.11883/1001-1455(2015)01-0101-07
    [9]Zhang Zai-chen, Lin Cong-mou, Huang Zhi-bo, Ge Bing-yang, Xu Liang. Prediction of blasting vibration of area near tunnel blasting source[J]. Explosion And Shock Waves, 2014, 34(3): 367-372. doi: 10.11883/1001-1455(2014)03-0367-06
    [10]YANG Jian-hua, LU Wen-bo, CHEN Ming, ZHOU Chuang-bing. Anequivalentsimulationmethodforblastingvibrationofsurroundingrock[J]. Explosion And Shock Waves, 2012, 32(2): 157-163. doi: 10.11883/1001-1455(2012)02-0157-07
    [11]TANG Ting, WANG Ming-yang, ZHAO Yue-tang. Transformation of boundary conditions of cavity expansion in an elastic medium[J]. Explosion And Shock Waves, 2009, 29(2): 189-193. doi: 10.11883/1001-1455(2009)02-0189-05
    [12]LI Zhi-kang, HUANG Feng-lei. A dynamic spherical cavity-expansion theory for concrete materials[J]. Explosion And Shock Waves, 2009, 29(1): 95-100. doi: 10.11883/1001-1455(2009)01-0095-06
    [13]GE Tao, WANG Ming-yang. Characters near strong impact loading zone in hard rock[J]. Explosion And Shock Waves, 2007, 27(4): 306-311. doi: 10.11883/1001-1455(2007)04-0306-06
    [14]HUANG Tao, CHEN Peng-wan, ZHANG Guo-xin, YANG Jun. Numerical simulation of two-hole blasting using numerical manifold method[J]. Explosion And Shock Waves, 2006, 26(5): 434-440. doi: 10.11883/1001-1455(2006)05-0434-07
  • Cited by

    Periodical cited type(5)

    1. 夏全志,吴艳青,柴传国,杨昆,黄风雷. 冲击加载下PBX界面对热点形成和安全性影响. 兵工学报. 2024(06): 1840-1853 .
    2. 胡秋实,尚海林,吴兆奎,廖深飞,傅华. PBX炸药缝隙挤压加载下的破裂模式及点火响应. 兵工学报. 2024(09): 3135-3146 .
    3. Guijun Wang,Yanqing Wu,Kun Yang,Quanzhi Xia,Fenglei Huang. Optimization of mechanical and safety properties by designing interface characteristics within energetic composites. Defence Technology. 2024(12): 59-72 .
    4. 黄彬彬,傅华,喻寅,刘仓理. 基于有限元-离散元结合方法的Steven实验三维数值模拟. 含能材料. 2020(10): 995-1002 .
    5. 刘睿,韩勇,代晓淦,李明,王军. 初始裂纹对高聚物粘结炸药低速撞击点火影响数值模拟研究. 含能材料. 2019(10): 812-818 .

    Other cited types(3)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(5)

    Article Metrics

    Article views (5161) PDF downloads(111) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return