Volume 40 Issue 3
Mar.  2020
Turn off MathJax
Article Contents
LI Xiaobin, ZHANG Ruijie, CUI Liwei, ZHANG Qingli. Coupling analysis of explosion pressure and free radical change during methane explosion inhibited by urea[J]. Explosion And Shock Waves, 2020, 40(3): 032101. doi: 10.11883/bzycj-2019-0090
Citation: LI Xiaobin, ZHANG Ruijie, CUI Liwei, ZHANG Qingli. Coupling analysis of explosion pressure and free radical change during methane explosion inhibited by urea[J]. Explosion And Shock Waves, 2020, 40(3): 032101. doi: 10.11883/bzycj-2019-0090

Coupling analysis of explosion pressure and free radical change during methane explosion inhibited by urea

doi: 10.11883/bzycj-2019-0090
  • Received Date: 2019-03-26
  • Rev Recd Date: 2019-09-30
  • Publish Date: 2020-03-01
  • In order to establish the link between macroscopic explosion suppression effect and the mechanism of microscopic explosion suppression during the methane explosion suppression process, we used the 20 L spherical explosion test devices and grating spectrometer to collect data on the pressure and flame emission spectrum, analyzed changes of some key free radicals or molecules such as NO, CN, CHO, HNO and OH with the methods of spectrum analysis and data synchronization analysis during the suppression of methane explosion, and obtained the coupling relationship between the development of methane explosion pressure and related free radicals’ content. The research suggests that adding urea can effectively reduce the explosion pressure of methane and extend the explosion induction period of methane. Under urea conditions, the contents of NO and HNO increase while those of CN, CHO and OH are reduced, which lead to the suppression of methane explosion; NO radicals are mainly produced during the stage of pressure increase. CN, CHO, and HNO radicals are mainly produced and peaked during the explosion induction period before pressure rises; OH radicals have always existed throughout the methane explosion and are high in content. The interference on the free radicals above can suppress the methane explosion in relevant reaction stages.
  • loading
  • [1]
    左前明, 程卫民, 汤家轩. 粉体抑爆剂在煤矿应用研究的现状与展望 [J]. 煤炭技术, 2010, 29(11): 78–80.

    ZUO Q M, CHENG W M, TANG J X. Current status and prospects of application and research of powder coal mine explosion suppression agent [J]. Coal Technology, 2010, 29(11): 78–80.
    [2]
    聂百胜, 杨龙龙, 孟筠青, 等. 基于图像处理的管道瓦斯爆炸火焰传播速度特征 [J]. 煤炭学报, 2016, 41(4): 884–891. DOI: 10. 13225/j. cnki. Jccs. 2015. 1106.

    NIE B S, YANG L L, MENG J Q, et al. Characteristics of flame propagation velocity of gas explosion in duct based on image processing [J]. Journal of China Coal Society, 2016, 41(4): 884–891. DOI: 10. 13225/j. cnki. Jccs. 2015. 1106.
    [3]
    高娜, 张延松, 胡毅亭. 温度压力对瓦斯爆炸危险性影响的实验研究 [J]. 爆炸与冲击, 2016, 36(2): 218–223. DOI: 10.11883/1001-1455(2016)02-0218-06.

    GAO N, YANG Y S, HU Y T. Experiental study on gas explosion hazard under different temperatures and pressures [J]. Explosion and Shock Waves, 2016, 36(2): 218–223. DOI: 10.11883/1001-1455(2016)02-0218-06.
    [4]
    王宝璐, 额日其太, 李挺. 氧化剂含氧浓度对甲烷反扩散火焰光谱特性影响实验研究 [J]. 煤矿安全, 2017, 38(4): 878–884. DOI: 10.13675/j.cnki.tjjs.2017.04.019.

    WANG B L, ERIQITAL, LI T. Experiental study of effects of oxygen mole fraction in oxidizer on inverse methane/air diffusion flame emission spectrum properties [J]. Journal of Propulsion Technology, 2017, 38(4): 878–884. DOI: 10.13675/j.cnki.tjjs.2017.04.019.
    [5]
    罗振敏, 邓军, 文虎, 等. 纳米粉体抑制矿井瓦斯爆炸的实验研究 [J]. 中国安全科学学报, 2008, 18(12): 84–88. DOI: 10.3969/j.issn.1003-3033.2008.12.014.

    LUO Z M, DENG J, WEN H, et al. Experimental study on the suppression of gas explosion with nanometer powder in coal mines [J]. China Safety Science Journal, 2008, 18(12): 84–88. DOI: 10.3969/j.issn.1003-3033.2008.12.014.
    [6]
    程方明, 邓军, 文虎, 等. SiO2纳米粉体抑制瓦斯爆炸的试验研究 [J]. 煤炭科学技术, 2010, 38(8): 73–76.

    CHENG F M, DENG J, WEN H, et al. Experiment study on SiO2 nanometer powder to restrain gas explosion [J]. Coal Science and Technology, 2010, 38(8): 73–76.
    [7]
    SREENIVASAN R, MINKYU L, V’YACHESLAV A, et al. Suppression of premixed flames with inert particles [J]. Journal of Loss Prevention in the Process Industries, 2015, 35: 46–51. DOI: 10.1016/j.jlp.2015.03.009.
    [8]
    文虎, 曹玮, 王开阔, 等. ABC干粉抑制瓦斯爆炸的实验研究 [J]. 中国安全生产科学技术, 2011, 7(6): 9–12. DOI: 10.3969/ j.issn.1673-193X.2011.06.002.

    WEN H, CAO W, WANG K K, et al. Experiment study on ABC dry powder to repress gas explosion [J]. Journal of Safety Science and Technology, 2011, 7(6): 9–12. DOI: 10.3969/ j.issn.1673-193X.2011.06.002.
    [9]
    文虎, 王秋红, 罗振敏, 等. 超细Al(OH)3粉体抑制甲烷爆炸的实验研究 [J]. 西安科技大学学报, 2009, 29(4): 388–390. DOI: 10.3969/j.issn.1672-9315.2009.04.003.

    WEN H, WANG Q H, LUO Z, et al. Experiment on Al(OH)3 ultrafine powder suppressing methane explosion [J]. Journal of Xi’an University of Science and Technology, 2009, 29(4): 388–390. DOI: 10.3969/j.issn.1672-9315.2009.04.003.
    [10]
    王天政. 超细粉体抑制管道瓦斯爆炸实验研究[D]. 河南, 焦作: 河南理工大学, 2012: 10−15.

    WANG T Z. Experiment study on the gas explosion suppression by the ultrafine powder in tube [D]. Jiaozuo, Henan: Henan Polytechnic University, 2012: 10−15.
    [11]
    MIKHAIL K. Prevention and suppression of explosions in gas-air and dust-air mixtures using powder aerosol-inhibitor [J]. Journal of Loss Prevention in the Process Industries, 2006, 19(6): 729–735. DOI: 10.1016/j.jlp.2006.05.004.
    [12]
    罗振敏, 张群, 王华, 等. 基于FLACS的受限空间瓦斯爆炸数值模拟 [J]. 煤炭学报, 2013, 38(8): 1381–1387.

    LUO Z M, ZHANG Q, WANG H, et al. Numerical simulation of gas explosion in confined space with FLACS [J]. Journal of China Coal Society, 2013, 38(8): 1381–1387.
    [13]
    王涛. 管道内甲烷爆炸特性及CO2抑爆的实验与数值模拟[D]. 西安: 西安科技大学, 2014: 21−26.

    WANG T. Experiment and numerical studies on the methane explosion and the suppression effect of CO2 in vessel [D]. Xi’an: Xi’an University of Science and Technology, 2014: 21−26.
    [14]
    李孝斌. 矿井瓦斯爆炸感应期内反应动力学分析及光学特征研究[D]. 西安: 西安科技大学, 2009: 35−37.

    LI X B. Analysis of reaction dynamics and study on optical characteristic of gas explosion in induction period [D]. Xi’an: Xi’an University of Science and Technology, 2009: 35−37.
    [15]
    杨剑. 超细粉体作用下甲烷扩散火焰燃烧及辐射光谱特性研究[D]. 杭州: 中国计量学院, 2015: 20−45.

    YANG J. Study on combustion and spectrum characteristics of methane diffusion flame interacted with superfine powder [D]. Hangzhou: China Jiliang University, 2015: 20−45.
    [16]
    杨翔. 甲烷爆炸初期NH4H2PO4粉体抑爆机理及应用研究[D]. 河北廊坊: 中国人民武装警察部队学院, 2017: 15−39.

    YANG X. NH4H2PO4 power explosion suppression mechanism in methane explosion prime and application [D]. Langfang, Hebei: The Chinese People’s Armed Police Force Academy, 2017: 15−39.
    [17]
    PADLEY P J. Flames: their structure, radiation and temperature [J]. Physics Bulletin, 1974, 22(3): 10–199.
    [18]
    HIGGINS B, MCQUAY M Q, LACAS F, et al. An experimental study on the effect of pressure and strain rate on CH chemiluminescence of premixed fuel-lean methane/air flames [J]. Fuel, 2001, 80(11): 1583. DOI: 10.1016/S0016-2361(01)00040-0.
    [19]
    刘奎, 李孝斌, 郑丹. 甲烷爆炸感应期内火焰光谱特征分析方法研究 [J]. 光谱学与光谱分析, 2015, 35(8): 2067–2071. DOI: 10.3964/j.issn.1000-0593(2015)08-2067-06.

    LIU K, LI X B, ZHENG D. The study about spectrum characteristic analysis method in the induction period of gas explosion flame [J]. Spectroscopy and Spectral Analysis, 2015, 35(8): 2067–2071. DOI: 10.3964/j.issn.1000-0593(2015)08-2067-06.
    [20]
    李孝斌, 李树刚, 林海飞, 等. 矿井瓦斯爆炸感应期确定方法的实验研究 [J]. 中国矿业大学学报, 2009, 38(4): 540–543. DOI: 10.3321/j.issn:1000-1964.2009.04.015.

    LI X B, LI S G, LIN H F, et al. Experiental research on the method of ascertaining the induction period of gas explosion in mine [J]. Journal of China University of Mining and Technology, 2009, 38(4): 540–543. DOI: 10.3321/j.issn:1000-1964.2009.04.015.
    [21]
    刘合, 陈方, 刘洪, 等. 甲烷/空气预混超声速燃烧的18步简化机理 [J]. 燃烧科学与技术, 2012, 18(5): 467–472.

    LIU H, CHEN F, LIU H, et al. 18-step reduced mechanism for methane/air premixed supersonic combustion [J]. Journal of Combustion Science and Technology, 2012, 18(5): 467–472.
    [22]
    侯金丽, 金平, 蔡国飙. 基于敏感性分析的氧/甲烷燃烧反应简化机理 [J]. 航空动力学, 2012, 27(7): 1549–1554.

    HOU J L, JIN P, CAI G B. Reduced mechanism for oxygen/methane combustion based on sensitivity analysis [J]. Journal of Aerospace Power, 2012, 27(7): 1549–1554.
    [23]
    HE Z, LI X B, LI M L, et al. The intrinsic mechanism of methane oxidation under explosion condition: a combined ReaxFF and DFT study [J]. Fuel, 2014, 124: 85–90. DOI: 10.1016/j.fuel.2014.01.070.
    [24]
    余明高, 王天政, 游浩. 粉体材料热特性对瓦斯抑爆效果影响的研究 [J]. 煤炭学报, 2012, 37(5): 830–835.

    YU M G, WANG T Z, YOU H. Study on gas explosion suppression influence of thermal properties of powder [J]. Journal of China Coal Society, 2012, 37(5): 830–835.
    [25]
    于健康, 张浩, 杨天虹, 等. HCNO自由基与羟基在气相中反应机理的理论研究 [J]. 分子科学学报, 2010, 26(3): 149–153. DOI: 10.3969/j.issn.1000-9035.2010.03.001.

    YU J K, ZHANG H, YANG T H, et al. Reaction mechanism of HCNO+OH in the gas phase [J]. Journal of Molecular Science, 2010, 26(3): 149–153. DOI: 10.3969/j.issn.1000-9035.2010.03.001.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (5428) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return