Citation: | XU Xiaohui, LI Jie, WANG Mingyang. Simulation and analysis of surface subsidence associated with the underground strong explosion[J]. Explosion And Shock Waves, 2019, 39(8): 084202. doi: 10.11883/bzycj-2019-0167 |
[1] |
ZHAO L F, XIE X B, WANG W M, et al. Regional seismic characteristics of the 9 October 2006 North Korean nuclear test [J]. Bulletin of the Seismological Society of America, 2008, 98(6): 2571–2589. DOI: 10.1785/0120080128.
|
[2] |
WEN L X, LONG H. High-precision location of North Korea’s 2009 nuclear test [J]. Seismological Research Letters, 2010, 81(1): 26–29. DOI: 10.1785/gssrl.81.1.26.
|
[3] |
ZHAO L F, XIE X B, WANG W M, et al. Yield estimation of the 25 May 2009 North Korean nuclear explosion [J]. Bulletin of the Seismological Society of America, 2012, 102: 467–478. DOI: 10.1785/0120110163.
|
[4] |
FORD S, DREGER D, WALTER W. Source analysis of the Memorial Day explosion, Kimchaek, North Korea [J]. Geophysical Research Letters, 2009, 36: L21304. DOI: 10.1029/2009GL040003.
|
[5] |
CHUN K Y, WU Y, HENDERSON G. Magnitude estimation and source discrimination: a close look at the 2006 and 2009 North Korean underground nuclear explosions [J]. Bulletin of the Seismological Society of America, 2011, 101: 1315–1329. DOI: 10.1785/0120100202.
|
[6] |
ZHANG M, WEN L. Seismological evidence for a low-yield nuclear test on 12 May 2010 in North Korea [J]. Seismological Research Letters, 2014, 86(1): 138–145. DOI: 10.1785/02201401170.
|
[7] |
ZHANG M, WEN L. High-precision location and yield of North Korea’s 2013 nuclear test [J]. Geophysical Research Letters, 2013, 40(12): 2941–2946. DOI: 10.1002/grl.50607.
|
[8] |
ZHAO L F, XIE X B, WANG W M, et al. The 12 February 2013 North Korean underground nuclear test [J]. Seismological Research Letters, 2014, 85(1): 130–134. DOI: 10.1785/0220130103.
|
[9] |
ZHAO L F, XIE X B, WANG W M, et al. Seismological investigation of the 2016 January 6 North Korean underground nuclear test [J]. Geophysical Journal International, 2016, 206(3): 1487–1491. DOI: 10.1093/gji/ggw239.
|
[10] |
TIAN D D, YAO J Y, WEN L X. Collapse and earthquake swarm after North Korea’s 3 September 2017 nuclear test [J]. Geophysical Research Letters, 2018, 45(9): 3976–3983. DOI: 10.1029/2018GL077649.
|
[11] |
赵连锋, 谢小碧, 何熹, 等. 2017年9月3日朝鲜地下核试验的地震学鉴别和当量估计 [J]. 科学通报, 2017, 62: 4163–4168. DOI: 10.1360/N972017-00979.
ZHAO Lianfeng, XIE Xiaobi, HE Xi, et al. Seismological discrimination and yield estimation of the 3 September 2017 Democratic People’s Republic of Korea (DPRK) underground nuclear test [J]. Chinese Science Bulletin, 2017, 62: 4163–4168. DOI: 10.1360/N972017-00979.
|
[12] |
HU J, LI Z W, DING X L, et al. Resolving three-dimensional surface displacements from InSAR measurements: a review [J]. Earth Science Reviews, 2014, 133: 1–17. DOI: 10.1016/j.earscirev.2014.02.005.
|
[13] |
ELLIOTT J R, WALTERS R J, WRIGHT T J. The role of space-based observation in understanding and responding to active tectonics and earthquakes [J]. Nature Communications, 2016, 7: 13844. DOI: 10.1038/ncomms13844.
|
[14] |
WANG T, SHI Q, NIKKHOO M. The rise, collapse, and compaction of Mt. Mantap from the 3 September 2017 North Korean nuclear test [J]. Science, 2018, 361(6398): 166–170. DOI: 10.1126/science.aar7230.
|
[15] |
ADUSHKIN V V, SPIVAK A. Underground explosions: WGC-2015-03 [R]. 2015.
|
[16] |
岳松林, 邱艳宇, 王德荣, 等. 岩石中爆炸成坑效应的模型试验方法及对比分析 [J]. 岩石力学与工程学报, 2014, 33(9): 1925–1932. DOI: 10.13722/j.cnki.jrme.2014.09.024.
YUE Songlin, QIU Yanyu, WANG Derong, et al. Modeling experiment methods for crating effects of explosions in rocks and comparative analysis [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(9): 1925–1932. DOI: 10.13722/j.cnki.jrme.2014.09.024.
|
[17] |
ADUSHKIN V V, PERNIK L M. Characteristics of the formation of subsidence craters [J]. Fizika Goreniya I Vzryva, 1972, 8(4): 541–552. DOI: 10.1007/BF00741202.
|
[18] |
徐小辉, 邱艳宇, 王明洋, 等. 大当量浅埋地下爆炸抛掷成坑效应的缩比模拟试验装置研制 [J]. 爆炸与冲击, 2018, 38(6): 156–166. DOI: 10.11883/bzycj-2017-0144.
XU Xiaohui, QIU Yanyu, WANG Mingyang, et al. Development of the testing apparatus for modeling large-scale underground cratering explosions [J]. Explosion and Shock Waves, 2018, 38(6): 156–166. DOI: 10.11883/bzycj-2017-0144.
|
[19] |
ОРЛЕНКО Л П. 爆炸物理学(上册) [M]. 孙承纬, 译. 北京: 科学出版社, 2011: 677−688.
|
[20] |
徐小辉, 邱艳宇, 王明洋, 等. 大当量地下浅埋爆炸真空室模拟相似材料研究 [J]. 岩石力学与工程学报, 2018, 37(S1): 3550–3556. DOI: 10.13722/j.cnki.jrme.2016.1539.
XU Xiaohui, QIU Yanyu, Wang Mingyang, et al. Similar materials for vacuum chamber model test under large scale throw blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S1): 3550–3556. DOI: 10.13722/j.cnki.jrme.2016.1539.
|
[21] |
ADUSHKIN V V, LEITH W. The containment of Soviet underground nuclear explosions: USGS Open File Report 01-312[R]. USA: US Department of the Interior Geological Survey, 2001.
|
[22] |
ROUGIER E, PATTON H J, Knight E E, et al. Constraints on burial depth and yield of the 25 May 2009 North Korean test from hydrodynamic simulations in a granite medium [J]. Geophysical Research Letters, 2011, 38(6): L16316. DOI: 10.1029/2011GL048269.
|