Volume 39 Issue 8
Aug.  2019
Turn off MathJax
Article Contents
XU Xiaohui, LI Jie, WANG Mingyang. Simulation and analysis of surface subsidence associated with the underground strong explosion[J]. Explosion And Shock Waves, 2019, 39(8): 084202. doi: 10.11883/bzycj-2019-0167
Citation: XU Xiaohui, LI Jie, WANG Mingyang. Simulation and analysis of surface subsidence associated with the underground strong explosion[J]. Explosion And Shock Waves, 2019, 39(8): 084202. doi: 10.11883/bzycj-2019-0167

Simulation and analysis of surface subsidence associated with the underground strong explosion

doi: 10.11883/bzycj-2019-0167
  • Received Date: 2019-04-24
  • Rev Recd Date: 2019-05-28
  • Publish Date: 2019-08-01
  • It is very important to monitor and evaluate the clandestine nuclear tests using the surface displacements such as subsidence craters induced by the underground nuclear explosion. Based on the similarity theory of the process of subsidence crater formation considering the influence of gravity, we conducted an explosive model test in a vacuum chamber, using our own independently developed explosive simulation apparatus and determined the subsidence zones of the surface displacements associated with the 3 September 2017 North Korean’s largest underground nuclear test. The results show that the radius of the surface subsidence zone is about 257 m, and the radius of collapse crater is about 154 m, which is equivalent to the estimated results according to the empirical formula and the monitored data of remote sensing with Synthetic Apeture Radar (SAR) by the TS-InSar satellite. Our results demonstrate that the explosive model test in a vacuum chamber can help characterize the irreversible zone of the surface displacements associated with the underground nuclear explosion, which has become an effective supplement of the seismological and satellite imagery methods to monitor the underground nuclear test.
  • loading
  • [1]
    ZHAO L F, XIE X B, WANG W M, et al. Regional seismic characteristics of the 9 October 2006 North Korean nuclear test [J]. Bulletin of the Seismological Society of America, 2008, 98(6): 2571–2589. DOI: 10.1785/0120080128.
    [2]
    WEN L X, LONG H. High-precision location of North Korea’s 2009 nuclear test [J]. Seismological Research Letters, 2010, 81(1): 26–29. DOI: 10.1785/gssrl.81.1.26.
    [3]
    ZHAO L F, XIE X B, WANG W M, et al. Yield estimation of the 25 May 2009 North Korean nuclear explosion [J]. Bulletin of the Seismological Society of America, 2012, 102: 467–478. DOI: 10.1785/0120110163.
    [4]
    FORD S, DREGER D, WALTER W. Source analysis of the Memorial Day explosion, Kimchaek, North Korea [J]. Geophysical Research Letters, 2009, 36: L21304. DOI: 10.1029/2009GL040003.
    [5]
    CHUN K Y, WU Y, HENDERSON G. Magnitude estimation and source discrimination: a close look at the 2006 and 2009 North Korean underground nuclear explosions [J]. Bulletin of the Seismological Society of America, 2011, 101: 1315–1329. DOI: 10.1785/0120100202.
    [6]
    ZHANG M, WEN L. Seismological evidence for a low-yield nuclear test on 12 May 2010 in North Korea [J]. Seismological Research Letters, 2014, 86(1): 138–145. DOI: 10.1785/02201401170.
    [7]
    ZHANG M, WEN L. High-precision location and yield of North Korea’s 2013 nuclear test [J]. Geophysical Research Letters, 2013, 40(12): 2941–2946. DOI: 10.1002/grl.50607.
    [8]
    ZHAO L F, XIE X B, WANG W M, et al. The 12 February 2013 North Korean underground nuclear test [J]. Seismological Research Letters, 2014, 85(1): 130–134. DOI: 10.1785/0220130103.
    [9]
    ZHAO L F, XIE X B, WANG W M, et al. Seismological investigation of the 2016 January 6 North Korean underground nuclear test [J]. Geophysical Journal International, 2016, 206(3): 1487–1491. DOI: 10.1093/gji/ggw239.
    [10]
    TIAN D D, YAO J Y, WEN L X. Collapse and earthquake swarm after North Korea’s 3 September 2017 nuclear test [J]. Geophysical Research Letters, 2018, 45(9): 3976–3983. DOI: 10.1029/2018GL077649.
    [11]
    赵连锋, 谢小碧, 何熹, 等. 2017年9月3日朝鲜地下核试验的地震学鉴别和当量估计 [J]. 科学通报, 2017, 62: 4163–4168. DOI: 10.1360/N972017-00979.

    ZHAO Lianfeng, XIE Xiaobi, HE Xi, et al. Seismological discrimination and yield estimation of the 3 September 2017 Democratic People’s Republic of Korea (DPRK) underground nuclear test [J]. Chinese Science Bulletin, 2017, 62: 4163–4168. DOI: 10.1360/N972017-00979.
    [12]
    HU J, LI Z W, DING X L, et al. Resolving three-dimensional surface displacements from InSAR measurements: a review [J]. Earth Science Reviews, 2014, 133: 1–17. DOI: 10.1016/j.earscirev.2014.02.005.
    [13]
    ELLIOTT J R, WALTERS R J, WRIGHT T J. The role of space-based observation in understanding and responding to active tectonics and earthquakes [J]. Nature Communications, 2016, 7: 13844. DOI: 10.1038/ncomms13844.
    [14]
    WANG T, SHI Q, NIKKHOO M. The rise, collapse, and compaction of Mt. Mantap from the 3 September 2017 North Korean nuclear test [J]. Science, 2018, 361(6398): 166–170. DOI: 10.1126/science.aar7230.
    [15]
    ADUSHKIN V V, SPIVAK A. Underground explosions: WGC-2015-03 [R]. 2015.
    [16]
    岳松林, 邱艳宇, 王德荣, 等. 岩石中爆炸成坑效应的模型试验方法及对比分析 [J]. 岩石力学与工程学报, 2014, 33(9): 1925–1932. DOI: 10.13722/j.cnki.jrme.2014.09.024.

    YUE Songlin, QIU Yanyu, WANG Derong, et al. Modeling experiment methods for crating effects of explosions in rocks and comparative analysis [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(9): 1925–1932. DOI: 10.13722/j.cnki.jrme.2014.09.024.
    [17]
    ADUSHKIN V V, PERNIK L M. Characteristics of the formation of subsidence craters [J]. Fizika Goreniya I Vzryva, 1972, 8(4): 541–552. DOI: 10.1007/BF00741202.
    [18]
    徐小辉, 邱艳宇, 王明洋, 等. 大当量浅埋地下爆炸抛掷成坑效应的缩比模拟试验装置研制 [J]. 爆炸与冲击, 2018, 38(6): 156–166. DOI: 10.11883/bzycj-2017-0144.

    XU Xiaohui, QIU Yanyu, WANG Mingyang, et al. Development of the testing apparatus for modeling large-scale underground cratering explosions [J]. Explosion and Shock Waves, 2018, 38(6): 156–166. DOI: 10.11883/bzycj-2017-0144.
    [19]
    ОРЛЕНКО Л П. 爆炸物理学(上册) [M]. 孙承纬, 译. 北京: 科学出版社, 2011: 677−688.
    [20]
    徐小辉, 邱艳宇, 王明洋, 等. 大当量地下浅埋爆炸真空室模拟相似材料研究 [J]. 岩石力学与工程学报, 2018, 37(S1): 3550–3556. DOI: 10.13722/j.cnki.jrme.2016.1539.

    XU Xiaohui, QIU Yanyu, Wang Mingyang, et al. Similar materials for vacuum chamber model test under large scale throw blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S1): 3550–3556. DOI: 10.13722/j.cnki.jrme.2016.1539.
    [21]
    ADUSHKIN V V, LEITH W. The containment of Soviet underground nuclear explosions: USGS Open File Report 01-312[R]. USA: US Department of the Interior Geological Survey, 2001.
    [22]
    ROUGIER E, PATTON H J, Knight E E, et al. Constraints on burial depth and yield of the 25 May 2009 North Korean test from hydrodynamic simulations in a granite medium [J]. Geophysical Research Letters, 2011, 38(6): L16316. DOI: 10.1029/2011GL048269.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views (5688) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return