WU Renjie, LI Haibo. Multi-scale failure mechanism analysis of layered phyllite subject to impact loading[J]. Explosion And Shock Waves, 2019, 39(8): 083106. doi: 10.11883/bzycj-2019-0187
Citation: WU Renjie, LI Haibo. Multi-scale failure mechanism analysis of layered phyllite subject to impact loading[J]. Explosion And Shock Waves, 2019, 39(8): 083106. doi: 10.11883/bzycj-2019-0187

Multi-scale failure mechanism analysis of layered phyllite subject to impact loading

doi: 10.11883/bzycj-2019-0187
  • Received Date: 2019-04-30
  • Rev Recd Date: 2019-05-23
  • Available Online: 2019-07-25
  • Publish Date: 2019-08-01
  • The dynamic compressive strength characteristics and macroscopic failure modes of layered phyllite are carried out by the Split Hopkinson Pressure Bar. The micromorphology of fracture surface was obtained by 3D laser instrument, and the fractal geometry was introduced to quantitatively describe the roughness of fracture surface. Based on the fracture mechanism observed by SEM, the dynamic failure mechanism of layered rock with different bedding angles is analyzed. The results indicate that the weak bedding plane has a great influence on the dynamic compressive strength of layered rock. The fractal dimension of layered phyllite changes in U-shape with the increase of bedding angle. The influence of bedding plane on the failure characteristics of layered rocks is examined according to strength and crack propagation. For specimens with bedding angle of 0°, the failure strength is controlled by rock matrix, but the weak bedding plane still has a large impact on the distribution and trend of cracks in rock failure. For specimens with bedding angle of 22.5°, strength and direction of cracks are controlled by both the rock matrix and weak bedding plane. For specimens with bedding dip angle ranging from 45° to 67.5°, strength and direction of cracks are controlled by weak bedding plane. For the bedding angle of 90°, the dynamic compressive strength of the specimen is affected by the rock matrix, and longitudinal macro-cracks are formed early on the weak plane of the bedding, which results in that the cracks are greatly affected by the bedding plane.
  • [1]
    JAEGER J C. Shear failure of anisotropic rocks [J]. Geological Magazine, 1960, 97(1): 65–72. DOI: 10.1017/S0016756800061100.
    [2]
    吴亮, 李凤, 卢文波, 等. 爆破扰动下邻近层状围岩隧道的稳定性与振速阈值 [J]. 爆炸与冲击, 2017, 37(2): 208–214. DOI: 10.11883/1001-1455(2017)02-0208-07.

    WU Liang, LI Feng, LU Wenbo, et al. Vibration velocity threshold of a tunnel adjacent to surrounding layered rocks under blasting load [J]. Explosion And Shock Waves, 2017, 37(2): 208–214. DOI: 10.11883/1001-1455(2017)02-0208-07.
    [3]
    POTYONDY O D. The bonded-particle model as a tool for rock mechanics research and application: current trends and future directions [J]. Geosystem Engineering, 2015, 18(1): 1–28. DOI: 10.1080/12269328.2014.998346.
    [4]
    裴建良, 苏立, 刘建锋, 等. 层状大理岩间接拉伸试验及断口形貌和断裂机理分析 [J]. 工程科学与技术, 2014, 46(4): 39–45. DOI: 10.15961/j.jsuese.2014.04.002.

    PEI Jianliang, SU Li, LIU Jianfeng, et al. Indirect tensile test of layered marble and analysis of fracture morphology and mechanism [J]. Advanced Engineering Sciences, 2014, 46(4): 39–45. DOI: 10.15961/j.jsuese.2014.04.002.
    [5]
    TIEN Y M, KUO M C, JUANG C H. An experimental investigation of the failure mechanism of simulated transversely isotropic rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(8): 1163–1181. DOI: 10.1016/j.ijrmms.2006.03.011.
    [6]
    MA T, PENG N, ZHU Z, et al. Brazilian tensile strength of anisotropic rocks: Review and new insights [J]. Energies, 2018, 11(2): 304. DOI: 10.3390/en11020304.
    [7]
    李先炜, 兰勇瑞, 邹俊兴. 岩石断口分析 [J]. 中国矿业学院学报, 1983, 12(1): 15–21.

    LI Xianwei, LAN Yongrui, ZOU Junxing. A study of rock fractures [J]. Journal of China University of Mining & Technology, 1983, 12(1): 15–21.
    [8]
    谢和平, 陈至达. 断口定量分析的分形几何方法 [J]. 工程力学, 1989, 6(4): 1–8.

    XIE Heping, CHEN Zhida. The method of fractal geometry for quantitative analysis of fracture surfaces [J]. Engineering Mechanics, 1989, 6(4): 1–8.
    [9]
    王礼立. 爆炸与冲击载荷下结构和材料动态响应研究的新进展 [J]. 爆炸与冲击, 2001, 21(2): 81–88. DOI: 10.3321/j.issn:1001-1455.2001.02.001.

    WANG Lili. Progress in studies on dynamic response of structures and materials under explosive/impact loading [J]. Explosion and Shock Waves, 2001, 21(2): 81–88. DOI: 10.3321/j.issn:1001-1455.2001.02.001.
    [10]
    LI X F, ZHANG Q B, LI H B, et al. Grain-based discrete element method (GB-DEM) modelling of multi-scale fracturing in rocks under dynamic loading [J]. Rock Mechanics and Rock Engineering, 2018, 51(12): 3785–3817. DOI: 10.1007/s00603-018-1566-2.
    [11]
    李海波, 王建伟, 李俊如, 等. 单轴压缩下软岩的动态力学特性试验研究 [J]. 岩土力学, 2004, 25(1): 1–4. DOI: 10.3969/j.issn.1000-7598.2004.01.001.

    LI Haibo, WANG Jianwei, LI Junru, et al. Mechanical properties of soft rock under dynamic uniaxial compression [J]. Rock and Soil Mechanics, 2004, 25(1): 1–4. DOI: 10.3969/j.issn.1000-7598.2004.01.001.
    [12]
    ZHANG Q B, ZHAO J. Effect of loading rate on fracture toughness and failure micromechanisms in marble [J]. Engineering Fracture Mechanics, 2013, 102: 288–309. DOI: 10.1016/j.engfracmech.2013.02.009.
    [13]
    ZHANG Z X, KOU S Q, JIANG L G, et al. Effects of loading rate on rock fracture: fracture characteristics and energy partitioning [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(5): 745–762. DOI: 10.1016/S1365-1609(00)00008-3.
    [14]
    ULUSAY R. The ISRM suggested methods for rock characterization, testing and monitoring: 2007-2014 [M]. Berlin: Springer International Publishing, 2014: 35−44. DOI: 10.1007/978-3-319-07713-0
    [15]
    LI X F, LI X, LI H B, et al. Dynamic tensile behaviours of heterogeneous rocks: The grain scale fracturing characteristics on strength and fragmentation [J]. International Journal of Impact Engineering, 2018, 118: 98–118. DOI: 10.1016/j.ijimpeng.2018.04.006.
    [16]
    LI X F, LI H B, ZHANG Q B, et al. Dynamic fragmentation of rock material: characteristic size, fragment distribution and pulverization law [J]. Engineering Fracture Mechanics, 2018, 199: 739–759. DOI: 10.1016/j.engfracmech.2018.06.024.
    [17]
    李晓锋, 李海波, 刘凯, 等. 冲击荷载作用下岩石动态力学特性及破裂特征研究 [J]. 岩石力学与工程学报, 2017(10): 57–69. DOI: 10.13722/j.cnki.jrme.2017.0539.

    LI Xiaofeng, LI Haibo, LIU Kai, et al. Dynamic properties and fracture characteristics of rocks subject to impact loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2017(10): 57–69. DOI: 10.13722/j.cnki.jrme.2017.0539.
    [18]
    张亚衡, 周宏伟, 谢和平. 粗糙表面分形维数估算的改进立方体覆盖法 [J]. 岩石力学与工程学报, 2005(17): 3192–3196. DOI: 10.3321/j.issn:1000-6915.2005.17.030.

    ZHANG Yaheng, ZHOU Hongwei, XIE Heping. Improved cubic covering method for fractal dimensions of a fracture surface of rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2005(17): 3192–3196. DOI: 10.3321/j.issn:1000-6915.2005.17.030.
    [19]
    DEREK H. 断口形貌学[M]. 李晓刚, 董超芳, 杜翠薇, 等译. 北京: 科学出版社, 2009: 93−109.
    [20]
    TOLANSKY S. Surface microtophgraphy [M]. London: Longmans, 1960: 78−89. DOI: 10.1021/ja01469a074.
    [21]
    TAKAHASHI K. Dynamic fracture instability in glassy polymers as studied by ultrasonic fractography [J]. Polymer Engineering & Science, 2010, 27(1): 25–32. DOI: 10.1002/pen.760270105.
  • Cited by

    Periodical cited type(13)

    1. 褚怀保,陈璐阳,杨小林,王东辉,魏海霞,孙博. 含初始损伤饱水花岗岩的冲击破坏规律. 爆炸与冲击. 2025(01): 53-66 . 本站查看
    2. 李庆文,潘创创,张学磊,钟宇奇,李玲,聂帆帆,李雯霞,徐梦娇. 基于颗粒流软件探究不同CFRP布层数对轴压煤圆柱能量演化的影响. 高压物理学报. 2025(04): 91-108 .
    3. 温森,黄睿智,孔庆梅,李胜. 强度比对类复合岩样冲击破碎特征的影响. 科学技术与工程. 2024(06): 2495-2502 .
    4. 王晓虎,于崇,邓守春,吴家骏. CGM水泥基灌浆料力学特性及动态本构模型. 辽宁工程技术大学学报(自然科学版). 2024(01): 38-47 .
    5. 叶海旺,温颖,雷涛,王其洲,余梦豪,严立德,韦文蓬,李兴旺,王炯辉,赵明生. 不同品位石墨矿岩冲击破坏模式与能耗特性研究. 金属矿山. 2023(03): 65-72 .
    6. 王伟,张宽,曹亚军,陈超,朱其志. 层状千枚岩各向异性力学特性与脆性评价研究. 岩土力学. 2023(04): 975-989 .
    7. 王雁冰,付代睿. 层理角度对天然岩石材料动态断裂行为的影响研究. 岩石力学与工程学报. 2023(04): 849-867 .
    8. 叶海旺,钱正昆,雷涛,温颖,李睿. 冲击载荷下石墨矿石动力学特性的层理效应及宏微观破坏机理. 爆炸与冲击. 2023(12): 27-39 . 本站查看
    9. 王成军,严晨. 采煤机振动冲击截割臂结构设计. 煤炭工程. 2022(06): 188-192 .
    10. 李地元,高飞红,刘濛,马金银. 动静组合加载下含孔洞层状砂岩破坏机制探究. 岩土力学. 2021(08): 2127-2140 .
    11. 胡建华,张涛,丁啸天,温观平,文增生,郭萌萌. 充-岩界面耦合体爆破动力响应机理. 爆炸与冲击. 2021(08): 164-178 . 本站查看
    12. 李红鹏,陈秋松. 银山矿千枚岩破坏特征及地压分布规律分析. 黄金. 2021(09): 47-51 .
    13. 邹宝平,罗战友,徐付军,丁浩楠,陶志刚,何满潮. 热–水–力耦合条件下深部砂岩冲击动力学特性试验研究. 岩石力学与工程学报. 2020(09): 1750-1761 .

    Other cited types(6)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views (6340) PDF downloads(86) Cited by(19)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return