Volume 40 Issue 8
Aug.  2020
Turn off MathJax
Article Contents
LI Xiaolong, LI Penghui, GUO Weiguo, YUAN Kangbo. Shear characteristics and failure mechanism of laser metal deposition GH4169 at different strain rates[J]. Explosion And Shock Waves, 2020, 40(8): 083101. doi: 10.11883/bzycj-2019-0254
Citation: LI Xiaolong, LI Penghui, GUO Weiguo, YUAN Kangbo. Shear characteristics and failure mechanism of laser metal deposition GH4169 at different strain rates[J]. Explosion And Shock Waves, 2020, 40(8): 083101. doi: 10.11883/bzycj-2019-0254

Shear characteristics and failure mechanism of laser metal deposition GH4169 at different strain rates

doi: 10.11883/bzycj-2019-0254
  • Received Date: 2019-06-24
  • Rev Recd Date: 2020-01-03
  • Publish Date: 2020-08-01
  • In order to accurately and reliably test the dynamic shear characteristics of laser metal deposition GH4169 on a traditional split Hopkinson pressure bar, this study compared the three different dynamic shear sample forms and dimensions to the shear zone stress based on numerical simulation. The influence of the distribution shows that the shear stress of the shear zone of the double shear specimen after optimization is dominant, and the dynamic shear test of approximate pure shear can be realized. Using this specimen form, the shear stress-strain curves of LMD GH4169 specimens with different orientations (scanning direction, deposition direction) at different strain rates were systematically tested, and the specimens were analyzed by SEM. The results show that: (1) the specimen used in this paper has high shear purity and uniform thickness distribution along the shear zone width, which can better obtain the dynamic shear properties of the material; (2) the shear stress-shear strain curves obtained from the experiment were analyzed. It is found that the material shows unobvious anisotropy in the scanning path direction and deposition direction. With the increase of strain rate, it has obvious strain rate strengthening effect; the uniaxial compression and dynamic shear stress-strain curves were simultaneously converted into equivalent stress-strain curves; the comparison confirms that the specimen form in this manuscript can exactly reflect the shear properties of the material; (3) through the microscopic analysis of the shear deformation of LMD GH4169, the size and depth of the fracture dimple decrease as the strain rate increases, and the toughness decreases. The shear failure is easy under a smaller deformation. Initial microscopic defects are likely to cause dynamic shear failure of the material.
  • loading
  • [1]
    BAI Y L, DODD B. Adiabatic shear localization: occurrence, theories, and applications[J]. Oxford University Press, 1992
    [2]
    WANG Z, GUAN K, GAO M, et al. The microstructure and mechanical properties of deposited-IN718 by selective laser melting [J]. Journal of Alloys and Compounds, 2012, 513: 0–523.
    [3]
    ZHANG D, FENG Z, WANG C, et al. Comparison of microstructures and mechanical properties of GH4169 alloy pro-cessed by selective laser melting and casting [J]. Materials Science and Engineering: A, 2018, 724(18): 357–367.
    [4]
    TROSCH T, JOHANNES S, RAINER V, et al. Microstructure and mechanical properties of selective laser melted GH4169 compared to forging and casting [J]. Materials Letters, 2016, 164: 428–431.
    [5]
    QI H, AZER M, RITTER A. Studies of standard heat treatment effects on microstructure and mechanical properties of laser net shape manufactured GH4169 [J]. Metallurgical & Materials Transactions Part A, 2009, 40(10): 2410–2422.
    [6]
    YUAN K, GUO W, LI P, et al. Influence of process parameters and heat treatments on the microstructures and dynamic mechanical behaviors of GH4169 superalloy manufactured by laser metal deposition [J]. Materials Science & Engineering A, 2018, 721: 215.
    [7]
    LEE W S, LIN C F, CHEN T H, et al. Dynamic shear properties of alloy 718 over wide temperature range [J]. Materials Transactions, 2012, 53(10): 1758–1764.
    [8]
    JOHANSSON J, PERSSON C, LAI H, et al. Microstructural examination of shear localisation during high strain rate deformation of alloy 718 [J]. Materials Science and Engineering A, 2016, 662: 363–372. DOI: 10.1016/j.msea.2016.03.080.
    [9]
    MURR L E, STAUFHAMMER K P, MEYERS M A, et al. Metallurgical applications of shock-wave and high-strain-rate phenomena [J]. Metallography, 1987, 20(2): 249–250. DOI: 10.1016/0026-0800(87)90034-6.
    [10]
    PEIRS J, VERLEYSEN P, DEGRIECK J, et al. The use of hat-shaped specimens to study the high strain rate shear be-haviour of Ti-6Al-4V [J]. International Journal of Impact Engineering, 2010, 37(6): 703–714. DOI: 10.1016/j.ijimpeng.2009.08.002.
    [11]
    SONG W D, HU M L, ZHANG H S, et al. Effects of different heat treatments on the dynamic shear response and shear localization in GH4169 alloy [J]. Materials Science and Engineering: A, 2018, 725: 76–87. DOI: 10.1016/j.msea.2018.04.010.
    [12]
    许泽建, 丁晓燕, 张炜琪, 等. 一种用于材料高应变率剪切性能测试的新型加载技术 [J]. 力学学报, 2016, 48(03): 143–148.

    XU Z J, DING X Y, ZHANG W Q, et al. A new loading technique for measuring shearing properties of materials under high strain rates [J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(03): 143–148.
    [13]
    AHMED N, MITROFANOV A V, BABITSKY V I, et al. Analysis of material response to ultrasonic vibration loading in turning GH4169 [J]. Materials Science and Engineering: A, 2006, 424(1−2): 318–325. DOI: 10.1016/j.msea.2006.03.025.
    [14]
    朱龙权, 朱志武, 张光瀚, 等. 霍普金森试验技术及6005A铝合金冲击动态试验 [J]. 成都大学学报(自然科学版), 2018, 37(03): 10–15.

    ZHU L Q, ZHU Z W, ZHANG G H, et al. Hopkinson experimental technique and 6005A aluminum alloy impact dynamic experimental study [J]. Journal of Chengdu University(Natural Science Edition), 2018, 37(03): 10–15.
    [15]
    ZHOU T, WU J, CHE J, et al. Dynamic shear characteristics of titanium alloy Ti-6Al-4V at large strain rates by the split Hopkinson pressure bar test [J]. International Journal of Impact Engineering, 2017, 109: 167–177. DOI: 10.1016/j.ijimpeng.2017.06.007.
    [16]
    CULVER R S. Thermal instability strain in dynamic plastic deformation [M] // Metallurgical Effects at High Strain Rates. Boston, MA: Springer, 1973: 519-530. DOI: 10.1007/978-1-4615-8696-8_29
    [17]
    DEMANGE J J, PRAKASH V, PEREIRA J M. Effects of material microstructure on blunt projectile penetration of a nickel-based super alloy [J]. International Journal of Impact Engineering, 2009, 36(8): 1027–1043. DOI: 10.1016/j.ijimpeng.2009.01.007.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(4)

    Article Metrics

    Article views (4298) PDF downloads(90) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return