Citation: | JIA Hailin, XIANG Haijun, LI Dihui, ZHAI Rupeng. Suppression of explosion in pipelines with different blocking ratios by ultrafine water mist containing sodium chloride[J]. Explosion And Shock Waves, 2020, 40(4): 042201. doi: 10.11883/bzycj-2019-0268 |
[1] |
YIN W T, FU G, YANG C, et al. Fatal gas explosion accidents on Chinese coal mines and the characteristics of unsafe behaviors: 2000-2014 [J]. Safety Science, 2017, 92: 173–179. DOI: 10.1016/j.ssci.2016.09.018.
|
[2] |
ZHOU F B, XIA T Q, WANG X X, et al. Recent developments in coal mine methane extraction and utilization in China: A review [J]. Journal of Natural Gas Science and Engineering, 2016, 31: 437–458. DOI: 10.1016/j.jngse.2016.03.027.
|
[3] |
BUNDY M, HAMINS A, LEE K Y. Suppression limits of low strain ratio non-premixed methane flames [J]. Combustion and Flame, 2003, 133(3): 299–310. DOI: 10.1016/S0010-2180(03)00012-9.
|
[4] |
罗振敏, 王涛, 程方明, 等. 小尺寸管道内二氧化碳抑制甲烷爆炸效果的实验及数值模拟 [J]. 爆炸与冲击, 2015, 35(3): 393–400. DOI: 10.11883/1001-1455-(2015)03-0393-08.
LUO Z M, WANG T, CHENG F M, et al. Experimental and numerical studies on the suppression of methane explosion using CO2 in a mini vessel [J]. Explosion and Shock Waves, 2015, 35(3): 393–400. DOI: 10.11883/1001-1455-(2015)03-0393-08.
|
[5] |
余明高, 安安, 游浩. 细水雾抑制管道瓦斯爆炸的实验研究 [J]. 煤炭学报, 2011, 36(3): 417–422. DOI: 10.11883/1001-1455-(2015)03-0393-08.
YU M G, AN A, YOU H. Experimental study on inhibiting the gas explosion by water spray in tube [J]. Journal of China Coal Society, 2011, 36(3): 417–422. DOI: 10.11883/1001-1455-(2015)03-0393-08.
|
[6] |
李永怀, 蔡周全. Φ700 mm管道超细水雾抑制瓦斯爆炸实验研究 [J]. 煤炭科学技术, 2010, 38(3): 49–54. DOI: 10.13199/j.cst.2010.03.55.liyh.028.
LI Y H, CAI Z Q. Experimental research on fine water spray in 700 mm diameter pipeline to restrain gas explosion [J]. Coal Science and Technology, 2010, 38(3): 49–54. DOI: 10.13199/j.cst.2010.03.55.liyh.028.
|
[7] |
JIANG B Y, LIU Z G, TANG M Y, et al. Active suppression of premixed methane/air explosion propagation by nonpremixed suppressant with nitrogen and abc powder in a semi-confined duct [J]. Journal of Natural Gas Science and Engineering, 2016, 29: 141–149. DOI: 10.1016/j.jngse.2016.01.004.
|
[8] |
KOROSTELEV V G. Aerosol-generating pyrotechnic compositions with components interacting in the combustion wave [J]. Combustion, Explosion and Shock Waves, 2005, 41(3): 315–318. DOI: 10.1007/s10573-005-0037-8.
|
[9] |
CICCARELLI G, FOWLER C J, BARDON M. Effect of obstacle size and spacing on the initial stage of flame acceleration in a rough tube [J]. Shock Waves, 2005, 14(3): 161–166. DOI: 10.1007/s00193-005-0259-4.
|
[10] |
马凯, 马志鹏, 张巨峰, 等. 泡沫陶瓷结构内瓦斯爆炸反应的断链 [J]. 矿业工程研究, 2013, 28(2): 33–36. DOI: 10.3969/j.issn.1674-5876.2013.02.008.
MA K, MA Z P, ZHANG J F, et al. Chain scission of gas explosion reaction in foam ceramics [J]. Mineral Engineering Research, 2013, 28(2): 33–36. DOI: 10.3969/j.issn.1674-5876.2013.02.008.
|
[11] |
余明高, 孔杰, 王燕, 等. 改性赤泥粉体抑制瓦斯爆炸的实验研究 [J]. 煤炭学报, 2014, 39(7): 1289–1295. DOI: 10.13225/j.cnki.jccs.2013.0847.
YU M G, KONG J, WANG Y, et al. Experimental research on gas explosion suppression by modified red mud [J]. Journal of China Coal Society, 2014, 39(7): 1289–1295. DOI: 10.13225/j.cnki.jccs.2013.0847.
|
[12] |
程方明, 邓军, 文虎, 等. SiO2纳米粉体抑制瓦斯爆炸的试验研究 [J]. 煤炭科学技术, 2010, 38(8): 73–76. DOI: 10.13199/j.cst.2010.08.79.chengfm.026.
CHEN F M, DENG J, WEN H, et al. Experiment study on SiO2 nanometer powder to restrain gas explosion [J]. Coal Science and Technology, 2010, 38(8): 73–76. DOI: 10.13199/j.cst.2010.08.79.chengfm.026.
|
[13] |
SONG Y F, ZHANG Q. Quantitative research on gas explosion inhibition by water mist [J]. Journal of Hazardous Materials, 2019, 363: 16–25. DOI: 10.1016/j.jhazmat.2018.09.059.
|
[14] |
林滢. 瓦斯爆炸水系抑制剂的实验研究[D]. 西安: 西安科技大学, 2006: 46.
|
[15] |
陈晓坤, 林滢, 罗振敏, 等. 水系抑制剂控制瓦斯爆炸的实验研究 [J]. 煤炭学报, 2006, 31(5): 603–606. DOI: 10.13225/j.cnki.jccs.2006.05.012.
CHEN X K, LIN Y, LUO Z M, et al. Experiment study on controlling gas explosion by water-depressant [J]. Journal of China Coal Society, 2006, 31(5): 603–606. DOI: 10.13225/j.cnki.jccs.2006.05.012.
|
[16] |
JOSEPH P, NICHOLS E, NOVOZHILOV V. A comparative study of the effects of chemical additives on the suppression efficiency of water mist [J]. Fire Safety Journal, 2013, 58(2): 221–225. DOI: 10.1016/j.firesaf.2013.03.003.
|
[17] |
CAO X Y, REN J J, BI M S, et al. Experimental research on the characteristics of methane/air explosion affected by ultrafine water mist [J]. Journal of Hazardous Materials, 2016, 324(B): 489–497. DOI: 10.1016/j.jhazmat.2016.11.017.
|
[18] |
CAO X Y, REN J J, ZHOU Y H, et al. Suppression of methane/air explosion by ultrafine water mist containing sodium chloride additive [J]. Journal of Hazardous Materials, 2015, 285: 311–318. DOI: 10.1016/j.jhazmat.2014.11.016.
|
[19] |
CAO X Y, REN J J, BI M S, et al. Experimental research on methane/air explosion inhibition using ultrafine water mist containing additive [J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 352–360. DOI: 10.1016/ j.jlp.2016.06.012.
|
[20] |
AJRASH M J, ZANGANEH J, MOGHTADERI B. Flame deflagration in side-on vented detonation tubes: a large scale study [J]. Journal of Hazardous Materials, 2018, 345: 38–47. DOI: 10.1016/j.jhazmat.2017.11.014.
|
[21] |
XIAO H, WANG Q, SHEN X, et al. An experimental study of premixed hydrogen/air flame propagation in a partially open duct [J]. International Journal of Hydrogen Energy, 2014, 39(11): 6233–6241. DOI: 10.1016/j.ijhydene.2013.05.003.
|
[22] |
LI Q, LIN B, JIAN C. Investigation on the interactions of gas explosion flame and reflected pressure waves in closed pipes [J]. Combustion Science and Technology, 2012, 184(12): 2154–2162. DOI: 10.1080/00102202.2012.705190.
|
[23] |
ZHANG Q, PANG L, LIANG H M. Effect of scale on the explosion of methane in air and its shockwave [J]. Journal of Loss Prevention in the Process Industries, 2011, 24(1): 43–48. DOI: 10.1016/j.jlp.2010.08.011.
|
[24] |
NFPA 750. Standard for the installation of water mist fire protection systems [S].1996 Edition. National Fire Protection Association, Quincy, MA, 2000. https://catalog.nfpa.org/NFPA 750 Standard on Water Mist Fire Protection Systems P1366.aspx.
|
[25] |
徐景德, 周心权, 吴兵. 瓦斯浓度和火源对瓦斯爆炸传播影响的实验分析 [J]. 煤炭科学技术, 2001(11): 15–17. DOI: 10.13199/j.cst.2001.11.18.xujd.007.
XU J D, ZHOU X Q, WU B. Experimental analysis on gas density and fire resource affected to expansion of gas explosion [J]. Coal Science and Technology, 2001(11): 15–17. DOI: 10.13199/j.cst.2001.11.18.xujd.007.
|
[26] |
秦文茜, 王喜世, 谷睿, 等. 超细水雾作用下瓦斯的爆炸压力及升压速率 [J]. 燃烧科学与技术, 2012, 18(1): 90–95.
QIN W Q, WANG X S, GU R, et al. Methane explosion overpressure and overpressure rise rate with suppression by ultra-fine water mist [J]. Journal of Combustion Science and Technology, 2012, 18(1): 90–95.
|
[27] |
李铮. 瓦斯爆炸及其细水雾抑制的实验研究[D]. 大连: 大连理工大学, 2011: 52−57.
|
[28] |
张鹏鹏. 超细水雾增强与抑制瓦斯爆炸的实验研究[D]. 大连: 大连理工大学, 2013: 41−48.
|
[1] | LIU Jiajia, ZHANG Xiang, GAO Zhiyang, ZHANG Yang, CHEN Jiuqiang, JIN Machao. Analysis on influencing factors of gas explosion overpressure peak in a U-shaped ventilation coal face based on orthogonal test[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0142 |
[2] | MAO Wenzhe, ZHANG Guotao, YANG Shuaishuai, XU Zihui, WANG Yan, JI Wentao. Characteristics of hydrogenated magnesium dust explosion flame propagating in a semi-enclosed space[J]. Explosion And Shock Waves, 2024, 44(6): 065401. doi: 10.11883/bzycj-2023-0363 |
[3] | GUO Hongzhan, ZHANG Yan, WANG Xiaorong. Explosion pressure characteristics of hydrogen-methane-ethanol mixtures[J]. Explosion And Shock Waves, 2023, 43(12): 125403. doi: 10.11883/bzycj-2023-0224 |
[4] | LIU Jiajia, ZHANG Yang, ZHANG Xiang, NIE Zishuo. Simulation study on propagation characteristics of gas explosion in Y-shaped ventilated coal face[J]. Explosion And Shock Waves, 2023, 43(8): 085401. doi: 10.11883/bzycj-2023-0018 |
[5] | ZHANG Yansong, LI Nan, GUO Rui, ZHANG Xinyan, ZHANG Gongyan, HUANG Xingwang. Relationship between pyrolysis kinetics and flame propagation characteristics of lauric acid and stearic acid dust explosion[J]. Explosion And Shock Waves, 2022, 42(7): 075402. doi: 10.11883/bzycj-2021-0470 |
[6] | LI Xiaobin, ZHANG Ruijie, CUI Liwei, ZHANG Qingli. Coupling analysis of explosion pressure and free radical change during methane explosion inhibited by urea[J]. Explosion And Shock Waves, 2020, 40(3): 032101. doi: 10.11883/bzycj-2019-0090 |
[7] | ZHU Xiaochao, ZHENG Ligang, YU Shuijun, WANG Yalei, LI Gang, DU Depeng, DOU Zengguo. Effect of blocking ratio on aluminum powder explosion’s characteristicsin vertical duct[J]. Explosion And Shock Waves, 2019, 39(10): 105402. doi: 10.11883/bzycj-2019-0006 |
[8] | ZHENG Ligang, LI Gang, WANG Yalei, ZHU Xiaochao, Dou Zengguo, DU Depeng, YU Minggao. Effect of blockage ratios on the characteristics of methane/air explosions suppressed by dry chemicals[J]. Explosion And Shock Waves, 2019, 39(11): 115403. doi: 10.11883/bzycj-2018-0228 |
[9] | YU Minggao, YANG Xufeng, ZHENG Kai, WAN Shaojie. Effect of obstacles on explosion characteristics of methane/hydrogen[J]. Explosion And Shock Waves, 2018, 38(1): 19-27. doi: 10.11883/bzycj-2017-0172 |
[10] | Gao Na, Zhang Yansong, Hu Yiting. Experimental study on gas explosion hazard under different temperatures and pressures[J]. Explosion And Shock Waves, 2016, 36(2): 218-223. doi: 10.11883/1001-1455(2016)02-0218-06 |
[11] | Lin Bai-quan, Hong Yi-du, Zhu Chuan-jie, Jiang Bing-you, Liu Qian, Sun Yu-min. Quantitative relationship between flow speed and overpressure of gas explosion in the open-end square tube[J]. Explosion And Shock Waves, 2015, 35(1): 108-115. doi: 10.11883/1001-1455(2015)01-0108-08 |
[12] | Li Run-zhi, Si Rong-jun. Simulation study of flow field characteristics of gas explosion in low temperature environment[J]. Explosion And Shock Waves, 2015, 35(6): 901-906. doi: 10.11883/1001-1455(2015)06-0901-06 |
[13] | Ma Qiu-ju, Zhang Qi, Pang Lei. Numerical simulation on interaction between laneway surface and methane explosion[J]. Explosion And Shock Waves, 2014, 34(1): 23-27. doi: 10.11883/1001-1455(2014)01-0023-05 |
[14] | Cao Wei-guo, Xu Sen, Liang Ji-yuan, Gao Wei, Pan Feng, Rao Guo-ning. Characteristics of flame propagation during coal dust cloud explosion[J]. Explosion And Shock Waves, 2014, 34(5): 586-593. doi: 10.11883/1001-1455(2014)05-0586-08 |
[15] | Zhou Xi-Hua, Meng Le, Shi Mei-jing, Guo Liang-hui, Zhao Jian-yuan, Feng Cun-cun. Influences of sealing fire zone in high gas mine on impact factors of gas explosion limits[J]. Explosion And Shock Waves, 2013, 33(4): 351-356. doi: 10.11883/1001-1455(2013)04-0351-06 |
[16] | Li Run-zhi, Huang Zi-chao, Si Rong-jun. Influence of environmental temperature on gas explosion pressure and its rise rate[J]. Explosion And Shock Waves, 2013, 33(4): 415-419. doi: 10.11883/1001-1455(2013)04-0415-05 |
[17] | XU Jing-de, ZHANG Li-cong, LI Ti-fa, YANG Geng-yu. Anumericalsimulationofstimulatingeffectoftramcars duringthemethaneexplosionpropagation[J]. Explosion And Shock Waves, 2012, 32(1): 47-50. doi: 10.11883/1001-1455(2012)01-0047-04 |
[18] | YE Qing, LIN Bai-quan, JIAN Cong-guang, JIA Zhen-zhen. Effectsofmagneticfieldonmethaneexplosionanditspropagation[J]. Explosion And Shock Waves, 2011, 31(2): 153-157. doi: 10.11883/1001-1455(2011)02-0153-05 |
[19] | LI Run-zhi. Numericalsimulationofcoaldustexplosioninducedbygasexplosion[J]. Explosion And Shock Waves, 2010, 30(5): 529-534. doi: 10.11883/1001-1455(2010)05-0529-06 |
[20] | JIN Ri-ya, HU Shuang-qi, BO Tao, ZHANG Ying-hao, YUAN Hong-su. Relation between explosion pressure and volume fraction of ClO2 gas[J]. Explosion And Shock Waves, 2009, 29(3): 333-336. doi: 10.11883/1001-1455(2009)03-0333-04 |
1. | 贾进章,田秀媛. 瓦斯爆炸抑制研究进展及发展趋势. 安全与环境学报. 2025(01): 95-107 . ![]() | |
2. | 杨克,李雪瑞,纪虹,郑凯,邢志祥,蒋军成. 改性煤矸石-海藻酸钠粉体对管道内甲烷/空气爆炸的抑爆实验. 爆炸与冲击. 2024(07): 174-187 . ![]() | |
3. | 张保勇,崔嘉瑞,陶金,王亚军,秦艺峰,魏春荣,张迎新. 不同迎爆面结构的泡沫金属对甲烷气体爆炸传播阻隔性能的实验研究. 爆炸与冲击. 2023(02): 170-180 . ![]() | |
4. | 段征,路长,班成伟,刘金刚,郭洪江,李明月. 封闭支管条件下ABC干粉抑爆机制研究. 火工品. 2023(02): 72-76 . ![]() | |
5. | 徐景德,田思雨,张延炜,张亮. 瓦斯爆炸主动式阻隔爆技术研究进展. 华北科技学院学报. 2022(04): 71-77 . ![]() | |
6. | 乔征龙,马恒,邓立军. 基于Charlette模型的柔性障碍物对瓦斯爆炸的影响研究. 安全与环境学报. 2022(05): 2420-2427 . ![]() | |
7. | 段玉龙,杨燕铃,李元兵,裴蓓,姚新友,王硕,米红甫. 滑移装置抑制甲烷爆炸影响分析. 中国安全生产科学技术. 2021(04): 122-127 . ![]() | |
8. | 段玉龙,李元兵,杨燕铃,龙凤英,俞树威,黄俊,卜云兵. 细水雾协同滑动装置对甲烷/空气预混气体爆炸特性的影响. 高压物理学报. 2021(05): 182-188 . ![]() |