Volume 40 Issue 4
Apr.  2020
Turn off MathJax
Article Contents
JIA Hailin, XIANG Haijun, LI Dihui, ZHAI Rupeng. Suppression of explosion in pipelines with different blocking ratios by ultrafine water mist containing sodium chloride[J]. Explosion And Shock Waves, 2020, 40(4): 042201. doi: 10.11883/bzycj-2019-0268
Citation: JIA Hailin, XIANG Haijun, LI Dihui, ZHAI Rupeng. Suppression of explosion in pipelines with different blocking ratios by ultrafine water mist containing sodium chloride[J]. Explosion And Shock Waves, 2020, 40(4): 042201. doi: 10.11883/bzycj-2019-0268

Suppression of explosion in pipelines with different blocking ratios by ultrafine water mist containing sodium chloride

doi: 10.11883/bzycj-2019-0268
  • Received Date: 2019-07-10
  • Rev Recd Date: 2019-11-05
  • Available Online: 2020-03-25
  • Publish Date: 2020-04-01
  • This work aims at the explosion problem in long-distance gas pipelines. An experimental study on the influence of ultrafine water mist with NaCl on the gas explosion characteristics of pipes with different blocking ratios was carried out in a self-built horizontally transparent duct. Such effects are quantified via the analysis of pressure and flame speed. The results show that the explosion overpressure increases with the increase of the pipeline blocking ratio in such gas explosion of the pipeline that is only under the pressure relief ports with different blocking ratios (0, 0.2, 0.4 and 0.6). Under the action of ultrafine water mist, the blocking ratio varies nonlinear with the time of flame front movement propagation to the end of the pipe. When the blocking rate is 0.2, the average flame velocity is the highest. When the fog flux is 8.4 mL and mass fraction of NaCl in it is 8%, the ultrafine water mist containing NaCl has the best fire and explosion suppression effect as the maximum explosion pressure drops by 59.2%. The ultra-fine mist containing NaCl acts directly on the explosion flame to suppress the explosion.
  • loading
  • [1]
    YIN W T, FU G, YANG C, et al. Fatal gas explosion accidents on Chinese coal mines and the characteristics of unsafe behaviors: 2000-2014 [J]. Safety Science, 2017, 92: 173–179. DOI: 10.1016/j.ssci.2016.09.018.
    [2]
    ZHOU F B, XIA T Q, WANG X X, et al. Recent developments in coal mine methane extraction and utilization in China: A review [J]. Journal of Natural Gas Science and Engineering, 2016, 31: 437–458. DOI: 10.1016/j.jngse.2016.03.027.
    [3]
    BUNDY M, HAMINS A, LEE K Y. Suppression limits of low strain ratio non-premixed methane flames [J]. Combustion and Flame, 2003, 133(3): 299–310. DOI: 10.1016/S0010-2180(03)00012-9.
    [4]
    罗振敏, 王涛, 程方明, 等. 小尺寸管道内二氧化碳抑制甲烷爆炸效果的实验及数值模拟 [J]. 爆炸与冲击, 2015, 35(3): 393–400. DOI: 10.11883/1001-1455-(2015)03-0393-08.

    LUO Z M, WANG T, CHENG F M, et al. Experimental and numerical studies on the suppression of methane explosion using CO2 in a mini vessel [J]. Explosion and Shock Waves, 2015, 35(3): 393–400. DOI: 10.11883/1001-1455-(2015)03-0393-08.
    [5]
    余明高, 安安, 游浩. 细水雾抑制管道瓦斯爆炸的实验研究 [J]. 煤炭学报, 2011, 36(3): 417–422. DOI: 10.11883/1001-1455-(2015)03-0393-08.

    YU M G, AN A, YOU H. Experimental study on inhibiting the gas explosion by water spray in tube [J]. Journal of China Coal Society, 2011, 36(3): 417–422. DOI: 10.11883/1001-1455-(2015)03-0393-08.
    [6]
    李永怀, 蔡周全. Φ700 mm管道超细水雾抑制瓦斯爆炸实验研究 [J]. 煤炭科学技术, 2010, 38(3): 49–54. DOI: 10.13199/j.cst.2010.03.55.liyh.028.

    LI Y H, CAI Z Q. Experimental research on fine water spray in 700 mm diameter pipeline to restrain gas explosion [J]. Coal Science and Technology, 2010, 38(3): 49–54. DOI: 10.13199/j.cst.2010.03.55.liyh.028.
    [7]
    JIANG B Y, LIU Z G, TANG M Y, et al. Active suppression of premixed methane/air explosion propagation by nonpremixed suppressant with nitrogen and abc powder in a semi-confined duct [J]. Journal of Natural Gas Science and Engineering, 2016, 29: 141–149. DOI: 10.1016/j.jngse.2016.01.004.
    [8]
    KOROSTELEV V G. Aerosol-generating pyrotechnic compositions with components interacting in the combustion wave [J]. Combustion, Explosion and Shock Waves, 2005, 41(3): 315–318. DOI: 10.1007/s10573-005-0037-8.
    [9]
    CICCARELLI G, FOWLER C J, BARDON M. Effect of obstacle size and spacing on the initial stage of flame acceleration in a rough tube [J]. Shock Waves, 2005, 14(3): 161–166. DOI: 10.1007/s00193-005-0259-4.
    [10]
    马凯, 马志鹏, 张巨峰, 等. 泡沫陶瓷结构内瓦斯爆炸反应的断链 [J]. 矿业工程研究, 2013, 28(2): 33–36. DOI: 10.3969/j.issn.1674-5876.2013.02.008.

    MA K, MA Z P, ZHANG J F, et al. Chain scission of gas explosion reaction in foam ceramics [J]. Mineral Engineering Research, 2013, 28(2): 33–36. DOI: 10.3969/j.issn.1674-5876.2013.02.008.
    [11]
    余明高, 孔杰, 王燕, 等. 改性赤泥粉体抑制瓦斯爆炸的实验研究 [J]. 煤炭学报, 2014, 39(7): 1289–1295. DOI: 10.13225/j.cnki.jccs.2013.0847.

    YU M G, KONG J, WANG Y, et al. Experimental research on gas explosion suppression by modified red mud [J]. Journal of China Coal Society, 2014, 39(7): 1289–1295. DOI: 10.13225/j.cnki.jccs.2013.0847.
    [12]
    程方明, 邓军, 文虎, 等. SiO2纳米粉体抑制瓦斯爆炸的试验研究 [J]. 煤炭科学技术, 2010, 38(8): 73–76. DOI: 10.13199/j.cst.2010.08.79.chengfm.026.

    CHEN F M, DENG J, WEN H, et al. Experiment study on SiO2 nanometer powder to restrain gas explosion [J]. Coal Science and Technology, 2010, 38(8): 73–76. DOI: 10.13199/j.cst.2010.08.79.chengfm.026.
    [13]
    SONG Y F, ZHANG Q. Quantitative research on gas explosion inhibition by water mist [J]. Journal of Hazardous Materials, 2019, 363: 16–25. DOI: 10.1016/j.jhazmat.2018.09.059.
    [14]
    林滢. 瓦斯爆炸水系抑制剂的实验研究[D]. 西安: 西安科技大学, 2006: 46.
    [15]
    陈晓坤, 林滢, 罗振敏, 等. 水系抑制剂控制瓦斯爆炸的实验研究 [J]. 煤炭学报, 2006, 31(5): 603–606. DOI: 10.13225/j.cnki.jccs.2006.05.012.

    CHEN X K, LIN Y, LUO Z M, et al. Experiment study on controlling gas explosion by water-depressant [J]. Journal of China Coal Society, 2006, 31(5): 603–606. DOI: 10.13225/j.cnki.jccs.2006.05.012.
    [16]
    JOSEPH P, NICHOLS E, NOVOZHILOV V. A comparative study of the effects of chemical additives on the suppression efficiency of water mist [J]. Fire Safety Journal, 2013, 58(2): 221–225. DOI: 10.1016/j.firesaf.2013.03.003.
    [17]
    CAO X Y, REN J J, BI M S, et al. Experimental research on the characteristics of methane/air explosion affected by ultrafine water mist [J]. Journal of Hazardous Materials, 2016, 324(B): 489–497. DOI: 10.1016/j.jhazmat.2016.11.017.
    [18]
    CAO X Y, REN J J, ZHOU Y H, et al. Suppression of methane/air explosion by ultrafine water mist containing sodium chloride additive [J]. Journal of Hazardous Materials, 2015, 285: 311–318. DOI: 10.1016/j.jhazmat.2014.11.016.
    [19]
    CAO X Y, REN J J, BI M S, et al. Experimental research on methane/air explosion inhibition using ultrafine water mist containing additive [J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 352–360. DOI: 10.1016/ j.jlp.2016.06.012.
    [20]
    AJRASH M J, ZANGANEH J, MOGHTADERI B. Flame deflagration in side-on vented detonation tubes: a large scale study [J]. Journal of Hazardous Materials, 2018, 345: 38–47. DOI: 10.1016/j.jhazmat.2017.11.014.
    [21]
    XIAO H, WANG Q, SHEN X, et al. An experimental study of premixed hydrogen/air flame propagation in a partially open duct [J]. International Journal of Hydrogen Energy, 2014, 39(11): 6233–6241. DOI: 10.1016/j.ijhydene.2013.05.003.
    [22]
    LI Q, LIN B, JIAN C. Investigation on the interactions of gas explosion flame and reflected pressure waves in closed pipes [J]. Combustion Science and Technology, 2012, 184(12): 2154–2162. DOI: 10.1080/00102202.2012.705190.
    [23]
    ZHANG Q, PANG L, LIANG H M. Effect of scale on the explosion of methane in air and its shockwave [J]. Journal of Loss Prevention in the Process Industries, 2011, 24(1): 43–48. DOI: 10.1016/j.jlp.2010.08.011.
    [24]
    NFPA 750. Standard for the installation of water mist fire protection systems [S].1996 Edition. National Fire Protection Association, Quincy, MA, 2000. https://catalog.nfpa.org/NFPA 750 Standard on Water Mist Fire Protection Systems P1366.aspx.
    [25]
    徐景德, 周心权, 吴兵. 瓦斯浓度和火源对瓦斯爆炸传播影响的实验分析 [J]. 煤炭科学技术, 2001(11): 15–17. DOI: 10.13199/j.cst.2001.11.18.xujd.007.

    XU J D, ZHOU X Q, WU B. Experimental analysis on gas density and fire resource affected to expansion of gas explosion [J]. Coal Science and Technology, 2001(11): 15–17. DOI: 10.13199/j.cst.2001.11.18.xujd.007.
    [26]
    秦文茜, 王喜世, 谷睿, 等. 超细水雾作用下瓦斯的爆炸压力及升压速率 [J]. 燃烧科学与技术, 2012, 18(1): 90–95.

    QIN W Q, WANG X S, GU R, et al. Methane explosion overpressure and overpressure rise rate with suppression by ultra-fine water mist [J]. Journal of Combustion Science and Technology, 2012, 18(1): 90–95.
    [27]
    李铮. 瓦斯爆炸及其细水雾抑制的实验研究[D]. 大连: 大连理工大学, 2011: 52−57.
    [28]
    张鹏鹏. 超细水雾增强与抑制瓦斯爆炸的实验研究[D]. 大连: 大连理工大学, 2013: 41−48.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (5005) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return