Citation: | SHI Yanli, JI Sunhang, WANG Wenda, ZHENG Long. The lateral impact performance of concrete-filled steel tubular (CFST) members at high temperatures[J]. Explosion And Shock Waves, 2020, 40(4): 043303. doi: 10.11883/bzycj-2019-0293 |
[1] |
XI F, LI Q M, TAN Y H. Dynamic response and critical temperature of a steel beam subjected to fire and subsequent impulsive loading [J]. Computers and Structures, 2014, 135: 100–108. DOI: 10.1016/j.compstruc.2014.01.014.
|
[2] |
RUAN Z, CHEN L, FANG Q. Numerical investigation into dynamic responses of RC columns subjected for fire and blast [J]. Journal of Loss Prevention in the Process Industries, 2015, 34: 10–21. DOI: 10.1016/j.jlp.2015.01.009.
|
[3] |
TAN Y H, XI F, LI S C, et al. Pulse shape effects on the dynamic response of a steel beam under combined action of fire and explosion loads [J]. Journal of Constructional Steel Research, 2017, 139: 484–492. DOI: 10.1016/j.jcsr.2017.10.001.
|
[4] |
YU X, CHEN L, FANG Q, et al. A concrete constitutive model considering coupled effects of high temperature and high strain rate [J]. International Journal of Impact Engineering, 2017, 101: 66–77. DOI: 10.1016/j.ijimpeng.2016.11.009.
|
[5] |
CHEN L, FANG Q, JIANG X Q, et al. Combined effects of high temperature and high strain rate on normal weight concrete [J]. International Journal of Impact Engineering, 2015, 86: 40–56. DOI: 10.1016/j.ijimpeng.2015.07.002.
|
[6] |
韩林海. 钢管混凝土结构: 理论与实践[M]. 3版. 北京: 科学出版社, 2016.
|
[7] |
WANG R, HAN L H, HOU C C. Behavior of concrete filled steel tubular (CFST) members under lateral impact: experiment and FEA model [J]. Journal of Constructional Steel Research, 2013, 80: 188–201. DOI: 10.1016/j.jcsr.2012.09.003.
|
[8] |
HAN L H, HOU C C, ZHAO X L, et al. Behaviour of high-strength concrete filled steel tubes under transverse impact loading [J]. Journal of Constructional Steel Research, 2014, 92: 25–39. DOI: 10.1016/j.jcsr.2013.09.003.
|
[9] |
王蕊, 李珠, 任够平, 等. 钢管混凝土梁在侧向冲击荷载作用下动力响应的试验研究和数值模拟 [J]. 土木工程学报, 2007, 40(10): 34–40. DOI: 10.3321/j.issn:1000-131x.2007.10.006.
WANG R, LI Z, REN G P, et al. Experimental study and numerical simulation of the dynamic response of concrete filled steel tubes under lateral impact load [J]. China Civil Engineering Journal, 2007, 40(10): 34–40. DOI: 10.3321/j.issn:1000-131x.2007.10.006.
|
[10] |
WANG R, HAN L H, TAO Z. Behavior of FRP-concrete-steel double skin tubular members under lateral impact: experimental study [J]. Thin-Walled Structures, 2015, 95: 363–373. DOI: 10.1016/j.tws.2015.06.022.
|
[11] |
WANG R, HAN L H, ZHAO X L, et al. Analytical behavior of concrete filled double steel tubular (CFDST) members under lateral impact [J]. Thin-Walled Structures, 2016, 101: 129–140. DOI: 10.1016/j.tws.2015.12.006.
|
[12] |
HU M C, HAN L H, HOU C C. Concrete-encased CFST members with circular sections under laterally low velocity impact: analytical behaviour [J]. Journal of Constructional Steel Research, 2018, 146: 135–154. DOI: 10.1016/j.jcsr.2018.03.017.
|
[13] |
史艳莉, 何佳星, 王文达, 等. 内配圆钢管的圆钢管混凝土构件耐撞性能分析 [J]. 振动与冲击, 2019, 38(9): 123–132. DOI: 10.13465/j.cnki.jvs.2019.09.017.
SHI Y L, HE J X, WANG W D, et al. Anti-impact performance analysis for circular CFST members with inner circular steel tube [J]. Journal of Vibration and Shock, 2019, 38(9): 123–132. DOI: 10.13465/j.cnki.jvs.2019.09.017.
|
[14] |
史艳莉, 鲜威, 王蕊, 等. 方套圆中空夹层钢管混凝土组合构件横向撞击试验研究 [J]. 土木工程学报, 2019, 52(12): 11–21, 35. DOI: 10.15951/j.tmgcxb.2019.12.002.
SHI Y L, XIAN W, WANG R, et al. Experimental study on circular-in-square concrete filled double-skin steel tubular (CFDST) composite components under lateral impact [J]. China Civil Engineering Journal, 2019, 52(12): 11–21, 35. DOI: 10.15951/j.tmgcxb.2019.12.002.
|
[15] |
HUO J S, ZHENG Q, CHEN B S, et al. Tests on impact behaviour of micro-concrete-filled steel tubes at elevated temperatures up to 400 ℃ [J]. Materials and Structures, 2009, 42(10): 1325–1334. DOI: 10.1617/s11527-008-9452-0.
|
[16] |
HUO J S, HE Y M, CHEN B S. Experimental study on impact behaviour of concrete-filled steel tubes at elevated temperatures up to 800 ℃ [J]. Materials and Structures, 2014, 47(1−2): 263–283. DOI: 10.1617/s11527-013-0059-8.
|
[17] |
CHEN W X, LUO L S, GUO Z K, et al. Strain rate effects on dynamic strength of high temperature-damaged RPC-FST [J]. Journal of Constructional Steel Research, 2018, 147: 324–339. DOI: 10.1016/j.jcsr.2018.04.025.
|
[18] |
霍静思, 任晓虎, 肖岩. 标准火灾作用下钢管混凝土短柱落锤动态冲击试验研究 [J]. 土木工程学报, 2012, 45(4): 9–20. DOI: 10.15951/j.tmgcxb.2012.04.009.
HUO J S, REN X H, XIAO Y. Impact behavior of concrete-filled steel tubular stub columns under ISO-834 standard fire [J]. China Civil Engineering Journal, 2012, 45(4): 9–20. DOI: 10.15951/j.tmgcxb.2012.04.009.
|
[19] |
CHEN H, LIEW J Y. Explosion and fire analysis of steel frames using mixed element approach [J]. Journal of Engineering Mechanics, 2005, 131(6): 606–616. DOI: 10.1061/(ASCE)0733-9399(2005)131:6(606).
|
[20] |
LIE T T, CHABOT M. Experimental studies on the fire resistance of hollow steel columns filled with plain concrete: NRC-IRC-4196[R]. Ottawa: National Research Council of Canada, 1992. DOI: 10.4224/20358480.
|
[21] |
WANG Y, QIAN X D, LIEW J Y R, et al. Experimental behavior of cement filled pipe-in-pipe composite structures under transverse impact [J]. International Journal of Impact Engineering, 2014, 72: 1–16. DOI: 10.1016/j.ijimpeng.2014.05.004.
|