Citation: | ZHOU Jie, ZHI Xiaoqi, WANG Shuai, HAO Chunjie. Rheological properties of Composition B in slow cook-off process[J]. Explosion And Shock Waves, 2020, 40(5): 052301. doi: 10.11883/bzycj-2019-0321 |
[1] |
智小琦. 弹箭炸药装药技术 [M]. 北京: 兵器工业出版社, 2012: 7−8.
ZHI X Q. Charge technology of explosive on projectile and rocket [M]. Beijing: Ordnance Industry Press, 2012: 7−8.
|
[2] |
HOBBS M L, KANESHIGE M J, ERIKSON W W. Predicting large-scale effects during cookoff of PBXs and melt-castable explosives [C] // Proceedings of the 26th International Colloquium on the Dynamics of Explosions and Reactive Systems. Boston: MA: OSTI, 2017: 152−158.
|
[3] |
MAIENSCHEIN J L, McCLELLAND M A, WARDELL J F, et al. ALE3D model predictions and experimental analysis of the cookoff response of Comp B [C] // Proceedings of Joint Army Navy NASA Air Force (JANNAF) Meeting. Colorado Springs, CO, USA: LLNL, 2003: 51−64.
|
[4] |
GLASCOE E A, DEHAVEN M R, MCCLELLAND M, et al. Mechanisms of Comp-B thermal explosions [C] // Proceedings of the 15th International Detonation Symposium. San Francisco: LLNL, 2014: 376−385.
|
[5] |
NICHOLS A L, SCHOFIELD S. Modeling the response of fluid/melt explosives to slow cook-off [C] // Proceedings of the 15th International Detonation Symposium. San Francisco: LLNL, 2014: 1128−1136.
|
[6] |
FEDOROFF B T, SHEFFIELD O E, KAYE S M. Encyclopedia of explosives and related items [M]. Dover, NJ: Picatinny Arsenal, 1962.
|
[7] |
HOBBS M L, KANESHIGE M J, ANDERSON M U. Cookoff of a melt-castable explosive (COMP-B) [C] // Proceedings of the 27th Propulsion Systems Hazards Joint Subcommittee Meeting. Monterrey: SNL-NM, 2012: 1020−1034.
|
[8] |
SANHYE W, DUBOIS C, LAROCHE I, et al. Numerical modeling of the cooling cycle and associated thermal stresses in a melt explosive charge [J]. AIChE Journal, 2016, 62(10): 3797–3811. DOI: 10.1002/aic.15288.
|
[9] |
NUNEZ M P, ZERKLE D K, ZUCKER J M. The rheology of molten Composition B [R]. NM: Los Alamos, 2012.
|
[10] |
ZERKLE D K, NUNEZ M P, ZUCKER J M. Molten composition B viscosity at elevated temperature [J]. Journal of Energetic Materials, 2016, 34(4): 368–383. DOI: 10.1080/07370652.2015.1102179.
|
[11] |
DAVIS S M, ZERKLE D K, SMILOWITZ L B, et al. Integrated rheology model: explosive composition B-3 [J]. Journal of Energetic Materials, 2018, 36(4): 398–411. DOI: 10.1080/07370652.2018.1451573.
|
[12] |
DAVIS S M, ZERKLE D K. Short communication: estimation of yield stress/viscosity of molten Octol [J]. AIP Advances, 2018, 8(5): 055202.
|
[13] |
MACOSKO C W. Rheology principles, measurements and applications [M]. New York: VCH Publishers, 1994: 92−98.
|
[14] |
MORRISON F A. Understanding rheology [M]. New York: Oxford University Press, 2001: 232.
|
[15] |
QUEMADA D. Rheology of concentrated disperse systems and minimum energy dissipation principle: I. viscosity-concentration relationship [J]. Rheologica Acta, 1977, 16(1): 82–94. DOI: 10.1007/BF01516932.
|
[16] |
ZHOU J Z Q, UHLHERR P H, LUO F T. Yield stress and maximum packing fraction of concentrated suspensions [J]. Rheologica Acta, 1995, 34(6): 544–561. DOI: 10.1007/BF00712315.
|
[17] |
Fluent Inc. FLUENT user’s guide [M]. US: Fluent Inc, 2006.
|
[18] |
MCCLELLAND M A, GLASCOE E A, NICHOLS A L, et al. ALE3D simulation of incompressible flow, heat transfer, and chemical decomposition of Comp B in slow cookoff experiments [C] // Proceedings of International Detonation Symposium. San Francisco: LLNL, 2014: 517−528.
|