Citation: | CHENG Shuai, SHI Yingju, YIN Wenjun, LIU Wenxiang, TANG Shiying, ZHANG Dezhi. Influence of aluminum foam lining on deformation of steel cylinders subjected to internal blast loading[J]. Explosion And Shock Waves, 2020, 40(7): 071406. doi: 10.11883/bzycj-2019-0339 |
[1] |
任新见, 李广新, 张胜民. 泡沫铝夹心排爆罐抗爆性能试验研究 [J]. 振动与冲击, 2011, 30(5): 213–217. DOI: 10.3969/j.issn.1000-3835.2011.05.044.
REN X J, LI G X, ZHANG S M. Antidetonation property tests for explosion-proof pots made of sandwich structure with aluminium foam [J]. Journal of Vibration and Shock, 2011, 30(5): 213–217. DOI: 10.3969/j.issn.1000-3835.2011.05.044.
|
[2] |
刘新让, 田晓耕, 卢天健, 等. 泡沫铝夹芯圆筒抗爆性能研究 [J]. 振动与冲击, 2012, 31(23): 166–173. DOI: 10.3969/j.issn.1000-3835.2012.23.031.
LIU X R, TIAN X G, LU T J, et al. Blast-resistance behaviors of sandwich-walled hollow cylinders with aluminum foam cores [J]. Journal of Vibration and Shock, 2012, 31(23): 166–173. DOI: 10.3969/j.issn.1000-3835.2012.23.031.
|
[3] |
GOEL M D, MATSAGAR V A, GUPTA A K. Blast resistance of stiffened sandwich panels with aluminum cenosphere syntactic foam [J]. International Journal of Impact Engineering, 2015, 77: 134–146. DOI: 10.1016/j.ijimpeng.2014.11.017.
|
[4] |
SANTOSA S P, ARIFURRAHMAN F, IZZUDIN M H, et al. Response analysis of blast impact loading of metal-foam sandwich panels [J]. Procedia Engineering, 2017, 173: 495–502. DOI: 10.1016/j.proeng.2016.12.073.
|
[5] |
张培文, 李鑫, 王志华, 等. 爆炸载荷作用下不同面板厚度对泡沫铝夹芯板动力响应的影响 [J]. 高压物理学报, 2013, 27(5): 699–703. DOI: 10.11858/gywlxb.2013.05.007.
ZHANG P W, LI X, WANG Z H, et al. Effect of face sheet thickness on dynamic response of aluminum foam sandwich panels under blast loading [J]. Chinese Journal of High Pressure Physics, 2013, 27(5): 699–703. DOI: 10.11858/gywlxb.2013.05.007.
|
[6] |
王涛, 余文力, 秦庆华, 等. 爆炸载荷下泡沫铝夹芯板变形与破坏模式的实验研究 [J]. 兵工学报, 2016, 37(8): 1456–1463. DOI: 10.3969/j.issn.1000-1093.2016.08.017.
WANG T, YU W L, QIN Q H, et al. Experimental investigation into deformation and damage patterns of sandwich plates with aluminum foam core subjected to blast loading [J]. Acta Armamentarii, 2016, 37(8): 1456–1463. DOI: 10.3969/j.issn.1000-1093.2016.08.017.
|
[7] |
周佩杰, 王坚, 陶钢, 等. 泡沫材料对冲击波的衰减特性 [J]. 爆炸与冲击, 2015, 35(5): 675–681. DOI: 10.11883/1001-1455(2015)05-0675-07.
ZHOU P J, WANG J, TAO G, et al. Attenuation characteristics of shock waves interacting with open and closed foams [J]. Explosion and Shock Waves, 2015, 35(5): 675–681. DOI: 10.11883/1001-1455(2015)05-0675-07.
|
[8] |
SKEWS B W, ATKINS M D, SEITZ M W. The impact of a shock wave on porous compressible foams [J]. Journal of Fluid Mechanics, 1993, 253: 245–265. DOI: 10.1017/S0022112093001788.
|
[9] |
LI Q M, MENG H. Attenuation or enhancement: a one-dimensional analysis on shock transmission in the solid phase of a cellular material [J]. International Journal of Impact Engineering, 2002, 27(10): 1049–1065. DOI: 10.1016/S0734-743X(02)00016-7.
|
[10] |
TAN P J, REID S R, HARRIGAN J J, et al. Dynamic compressive strength properties of aluminium foams: Part Ⅰ: experimental data and observations [J]. Journal of the Mechanics and Physics of Solids, 2005, 53(10): 2174–2205. DOI: 10.1016/j.jmps.2005.05.007.
|
[11] |
TAN P J, REID S R, HARRIGAN J J, et al. Dynamic compressive strength properties of aluminium foams: Part Ⅱ: ‘shock’ theory and comparison with experimental data and numerical models [J]. Journal of the Mechanics and Physics of Solids, 2005, 53(10): 2206–2230. DOI: 10.1016/j.jmps.2005.05.003.
|
[12] |
LOPATNIKOV S L, GAMA B A, HAQUE J, et al. Dynamics of metal foam deformation during Taylor cylinder-Hopkinson bar impact experiment [J]. Composite Structures, 2003, 61(1−2): 61–71.
|
[13] |
HARRIGAN J J, REID S R, YAGHOUBI A S. The correct analysis of shocks in a cellular material [J]. International Journal of Impact Engineering, 2010, 37(8): 918–927. DOI: 10.1016/j.ijimpeng.2009.03.011.
|
[14] |
ALEYAASIN M, HARRIGAN J J, REID S R. Air-blast response of cellular material with a face plate: an analytical-numerical approach [J]. International Journal of Mechanical Sciences, 2015, 91: 64–70. DOI: 10.1016/j.ijmecsci.2014.03.027.
|
[15] |
秦学军, 张德志, 杨军, 等. 内部爆炸作用下钢筒塑性变形研究 [J]. 兵工学报, 2014, 35(S2): 135−138.
QIN X J, ZHANG D Z, YANG J, et al. Research on plastic deformation of cylindrical steel shells under internal explosion loading [J]. Acta Armamentarii, 2014, 35(S2): 135−138.
|
[16] |
张德志. 柱形爆炸容器载荷与塑形结构响应研究 [D]. 西安: 西北核技术研究所, 2012: 66−68.
ZHANG D Z. Investigation on load and plastic structure response of cylindrical explosion vessel [D]. Xi’an: Northwest Institute of Nuclear Technology, 2012: 66−68.
|
[17] |
杨军, 王克逸, 徐海斌, 等. 光纤位移干涉仪的研制及其在Hopkinson压杆实验中的应用 [J]. 红外与激光工程, 2013, 42(1): 102–107. DOI: 10.3969/j.issn.1007-2276.2013.01.019.
YANG J, WANG K Y, XU H B, et al. Development of an optical-fiber displacement interferometer and its application in Hopkinson pressure bar experiment [J]. Infrared and Laser Engineering, 2013, 42(1): 102–107. DOI: 10.3969/j.issn.1007-2276.2013.01.019.
|
[18] |
杨军, 李焰, 张德志, 等. 光子多普勒测速仪与压杆相结合的冲击波反射压力测试技术 [J]. 兵工学报, 2017, 38(7): 1368–1374. DOI: 10.3969/j.issn.1000-1093.2017.07.015.
YANG J, LI Y, ZHANG D Z, et al. Measuring technique of reflected blast wave pressure based on pressure bar and Photonic Doppler Velocimeter [J]. Acta Armamentarii, 2017, 38(7): 1368–1374. DOI: 10.3969/j.issn.1000-1093.2017.07.015.
|
[19] |
刘文祥, 张庆明, 钟方平, 等. 球壳塑性变形下的应变增长现象 [J]. 爆炸与冲击, 2017, 37(5): 893–898. DOI: 10.11883/1001-1455(2017)05-0893-06.
LIU W X, ZHANG Q M, ZHONG F P, et al. Strain growth of spherical shell subjected to internal blast loading during plastic response [J]. Explosion and Shock Waves, 2017, 37(5): 893–898. DOI: 10.11883/1001-1455(2017)05-0893-06.
|
[20] |
闻邦椿. 机械设计手册: 第一卷[M]. 5版. 北京: 机械工业出版社, 2011: 2−39.
|