Citation: | YAO Kuiguang, ZHAO Xuefeng, FAN Xing, XUE Pengyi, DAI Xiaogan. Burn rate-pressure characteristic for PBX-1 explosive at high pressures[J]. Explosion And Shock Waves, 2020, 40(1): 011404. doi: 10.11883/bzycj-2019-0347 |
[1] |
TARVER C M, MCGUIRE R R, WRENN E W, et al. Thermal decomposition of explosives with full containment in one-dimensional geometries [C] // Paper presented at 17th International Symposium on Combustion. England, 1978.
|
[2] |
WILLIAMS M R, MATEI M V. The decomposition of some RDX and HMX based materials in the one-dimensional time to explosion apparatus. part 1. time to explosion and apparent activation energy [J]. Propellants, Explosives, Pyrotechnics, 2006, 31(6): 435–441. DOI: 10.1002/prep.200600058.
|
[3] |
JAN H E. Slow heating, munitions test procedures: NATO STANAG 4382 [S]. Brussels: NATO Standardization Agency, 2003: 1−6.
|
[4] |
代晓淦, 黄毅民, 吕子剑, 等. 不同升温速率热作用下PBX-2炸药的响应规律 [J]. 含能材料, 2010, 18(3): 282–285. DOI: 10.3969/j.issn.1006-9941.2010.03.010.
DAI X G, HUANG Y M, LYU Z J, et al. Reaction behavior for PBX-2 explosive at different Heating rate [J]. Chinese Journal of Energetic Materials, 2010, 18(3): 282–285. DOI: 10.3969/j.issn.1006-9941.2010.03.010.
|
[5] |
NAOS J T, KNET L A, GILL W, et al. Fast cook-off testing in enclosed facilities with reduced emissions: SAND-91-0470C [R]. USA: Sandia National Labs, 1991.
|
[6] |
胡海波, 郭应文, 傅华, 等. 炸药事故反应烈度转化的主控机制 [J]. 含能材料, 2016, 24(7): 622–624. DOI: 10.11943/j.issn.1006-9941.2016.07.00X.
HU H B, GUO Y W, FU H, et al. Dominant mechanism affecting reaction violence transition of explosive in accidents [J]. Chinese Journal of Energetic Materials, 2016, 24(7): 622–624. DOI: 10.11943/j.issn.1006-9941.2016.07.00X.
|
[7] |
杨荣杰, 李玉平, 刘云飞, 等. 固体推进剂燃烧过程实时监测与燃速测定系统 [J]. 推进技术, 2000, 21(1): 86–88. DOI: 10.3321/j.issn:1001-4055.2000.01.025.
YANG R J, LI Y P, LIU Y F, et al. Advanced system of monitor and measurement for the combustion process and rate of solid propellants [J]. Journal of Propulsion Technology, 2000, 21(1): 86–88. DOI: 10.3321/j.issn:1001-4055.2000.01.025.
|
[8] |
温刚, 堵平, 廖昕. 用密闭爆发器法测定发射药实际燃速的原理和方法 [J]. 火炸药学报, 2011, 34(3): 57–60. DOI: 10.3969/j.issn.1007-7812.2011.03.015.
WEN G, DU P, LIAO X. Principle and method of measuring actual burning rate of propellant by closed bomb [J]. Chinese Journal of Explosives & Propellants, 2011, 34(3): 57–60. DOI: 10.3969/j.issn.1007-7812.2011.03.015.
|
[9] |
胡松启, 邓哲, 刘迎吉. 复合推进剂应变条件下燃速变化的实验研究 [J]. 固体火箭技术, 2013, 36(2): 230–233.
HU S Q, DENG Z, LIU Y J. Experimental research on burning rate change of composite propellant under strain [J]. Journal of Solid Rocket Technology, 2013, 36(2): 230–233.
|
[10] |
COOPER M A, OLIVER M S. The burning regimes and conductive burn rates of titanium subhydride potassium perchlorate (TiH1.65/KClO4) in hybrid closed bomb-strand burner experiments [J]. Combustion and Flame, 2013, 160: 2619–2630. DOI: 10.1016/j.combustflame.2013.05.015.
|
[11] |
MAIENSCHEIN J L, WARDELL J F, DEHAVEN M R, et al. Deflagration of HMX based explosives at high temperatures and pressures [J]. Propellants, Explosives, Pyrotechnics, 2004, 29: 287–295. DOI: 10.1002/prep.200400061.
|
[12] |
GLASCOE E A, SPRINGER H K, TRINGE J, et al. A comparison of deflagration rates at elevated pressures and temperatures with thermal explosion results [C] // Shock Compression of Condensed Matter, American Institute Physics, 2011.
|
[13] |
MAIENSCHEIN J L, WARDELL J F. Deflagration behavior of HMX-based explosives at high temperatures and pressures [C] // JANNAF 21st Propulsion Systems Hazards Subcommittee Meeting. Colorado Springs, CO, United States, 2003.
|
[14] |
GLASCOE E A, MAIENSCHEIN J L, BURNHAM A K, et al. PBXN-9 ignition kinetics and deflagration rates [C] // 55th JANNAF Propulsion Meeting. Newton, MA, United States, 2008.
|
[15] |
KOERNER J, MAIENSCHEIN J L, BLACK K, et al. LX-17 deflagration at high pressures and temperatures [C] // 23rd Propulsion Systems Hazards Joint Subcommittee Meeting. San Diego, CA, United States, 2006.
|
[16] |
ASAY B. Shock wave science and technology reference library, Vo. 5: non-shock initiation of explosives [M]. Springer Science & Business Media, 2010.
|
[1] | GUO Wencan, ZHANG Zhiqiang, DENG Shunyi, HUANG Wenbin, PEI Hongbo. Influence of longitudinal air gaps within charge structure on the detonation performance of explosives[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0165 |
[2] | HU Lishuang, LIU Yang, YANG Yajun, ZHU He, LIANG Kaili, HU Shuangqi. Inhibition effect of water mist on RDX dust explosion[J]. Explosion And Shock Waves, 2024, 44(5): 055401. doi: 10.11883/bzycj-2023-0346 |
[3] | GUO Lu, ZHI Xiaoqi, QU Kepeng, LIU Xinghe, JIA Jie, LI Jin. Calculation of pressure parameters at ignition moment of HMX-based aluminized pressed explosives during slow cook-off[J]. Explosion And Shock Waves, 2024, 44(6): 062303. doi: 10.11883/bzycj-2023-0353 |
[4] | ZHAO Xiangyu, LI Hongbo, LI Zili, CUI Gan, FU Yang. Experimental study on the minimum ignition energy of methane at low temperature[J]. Explosion And Shock Waves, 2018, 38(2): 353-358. doi: 10.11883/bzycj-2016-0218 |
[5] | ZHOU Ning, ZHANG Guowen, WANG Wenxiu, ZHAO Huijun, YUAN Xiongjun, HUANG Weiqiu. Effect of ignition energy on the explosion process and the dynamic response of propane-air premixed gas[J]. Explosion And Shock Waves, 2018, 38(5): 1031-1038. doi: 10.11883/bzycj-2017-0049 |
[6] | CHANG Lihua, HE Hui, WEN Weifeng, LI Jinhe, WANG Xu, RAN Maojie. Study of underwater-explosion shock wave using ultrahigh-speed simultaneous framing and streak photography technology[J]. Explosion And Shock Waves, 2018, 38(2): 437-442. doi: 10.11883/bzycj-2016-0241 |
[7] | Li Yangchao, Du Yang, Qi Sheng, Li Guoqing, Wang Shimao. Gasoline vapor/air premixed flame's unstretched laminar burning velocity[J]. Explosion And Shock Waves, 2017, 37(5): 863-870. doi: 10.11883/1001-1455(2017)05-0863-08 |
[8] | Sun Guilei, Yan Honghao, Li Xiaojie. Preparation of grapheme by detonation using liquid explosive[J]. Explosion And Shock Waves, 2016, 36(5): 715-720. doi: 10.11883/1001-1455(2016)05-0715-06 |
[9] | Zhang Zhu, Jin Yan -juan. Shock wave loading of reverse detonation model[J]. Explosion And Shock Waves, 2014, 34(2): 223-228. doi: 10.11883/1001-1455(2014)02-0223-06 |
[10] | TAO Wei-jun, HUAN Shi, HUANG Feng-lei, JIANG Guo-ping. Lateralrarefactionwaveeffectsonshockinitiation ofheterogeneouscondensedexplosives[J]. Explosion And Shock Waves, 2011, 31(4): 397-401. doi: 10.11883/1001-1455(2011)04-0397-05 |
[11] | CHEN Jun, ZENG Dai-peng, SUN Cheng-wei, ZHANG Zhen-yu, TAND uo-wang. Equationsofstateforoverdriven-detonationproducts ofJB-9014explosive[J]. Explosion And Shock Waves, 2010, 30(6): 583-587. doi: 10.11883/1001-1455(2010)06-0583-05 |
[12] | LONG Xin-ping, HAN Yong, JIANG Zhi-hai, HUANG Hui, HUANG Yi-min, HONG Tao. Measurementandnumericalsimulationofinitialstage aboutdetonationproductsdrivingwater[J]. Explosion And Shock Waves, 2010, 30(1): 12-16. doi: 10.11883/1001-1455(2010)01-0012-05 |
[13] | WANG Hui-jun, CHEN Wang-hua, HE Zhong-qi, HU Yi-ting, XU Hai-ou, PENG Jin-hua, LIU Rong-hai. Shock sensitivity measurement of explosives by an underwater card gap test method[J]. Explosion And Shock Waves, 2009, 29(5): 481-485. doi: 10.11883/1001-1455(2009)05-0481-05 |
[14] | FENG Xiao-jun, WANG Xiao-feng. Influences of charge porosity on cook-off response of explosive[J]. Explosion And Shock Waves, 2009, 29(1): 109-112. doi: 10.11883/1001-1455(2009)01-0109-04 |
[15] | LI Jin-he, ZHAO Ji-bo, TAN Duo-wang, WANG Yan-ping, ZHANG Yuan-ping. Underwater shock wave performances of explosives[J]. Explosion And Shock Waves, 2009, 29(2): 172-176. doi: 10.11883/1001-1455(2009)02-0172-05 |
[16] | ZHANG A-man, YAO Xiong-liang, WEN Xue-you. Physical behaviors of an underwater explosion bubble in a free field[J]. Explosion And Shock Waves, 2008, 28(5): 391-400. doi: 10.11883/1001-1455(2008)05-0391-10 |
[17] | LI Zhi-peng, LONG Xin-ping, HUANG Yi-min, HE Bi, WANG Rong, HE Song-wei. Electromagnetic gauge measurements of shock initiating JOB-9003 explosive[J]. Explosion And Shock Waves, 2006, 26(3): 269-272. doi: 10.11883/1001-1455(2006)03-0269-04 |
[18] | PENG Qi-xian, LIU Jun, LI Ze-ren, DENG Xiang-yang, KONG Fan-long. An experimental study of increasing the driving power of explosive with restricted charge[J]. Explosion And Shock Waves, 2006, 26(5): 448-451. doi: 10.11883/1001-1455(2006)05-0448-04 |
[19] | JIA Guang-hui, HUANG Hai, HU Zhen-dong. Simulation analyse of hypervelocity impact perforation[J]. Explosion And Shock Waves, 2005, 25(1): 47-53. doi: 10.11883/1001-1455(2005)01-0047-07 |
[20] | FENG Xiao-jun, WANG Xiao-feng, HAN Zhu-long. The study of charging size influence on the response of explosives in slow cook-off test[J]. Explosion And Shock Waves, 2005, 25(3): 285-288. doi: 10.11883/1001-1455(2005)03-0285-04 |