Citation: | LI Tao, HU Haibo, SHANG Hailin, FU Hua, WEN Shanggang, YU Hong. Propagation of reactive cracks and characterization of reaction violence in spherical charge under strong confinement[J]. Explosion And Shock Waves, 2020, 40(1): 011402. doi: 10.11883/bzycj-2019-0348 |
[1] |
ASAY B. Shock wave science and technology reference library, Vol. 5: Non-shock initiation of explosives [M]. Springer Science & Business Media, 2010: 245−292.
|
[2] |
JACKSON S I, HILL L G. Predicting runaway reaction in a solid explosive containing a single crack [C] // AIP Conference Proceed-ings, 2007, 955(1): 927−930.
|
[3] |
ANDREEVSKIKH L A, VAKHMISTROV S A, PRONIN D A, et al. Convective combustion in the slot of an explosive charge [J]. Combustion, Explosion, and Shock Waves, 2015, 51(6): 659–663. DOI: 10.1134/S0010508215060064.
|
[4] |
DYER A S, TAYLOR J W. Initiation of detonation by friction on a high explosive charge [C] // 5th Symposium (International) on Detonation. ONR, 1970: 291−300.
|
[5] |
IDAR D J, LUCHT R A, SCAMMON R, et al. PBX 9501 high explosive violent response/low amplitude insult project: Phase I [R]. Los Alamos National Laboratory. New Mexico, United States, 1997.
|
[6] |
ASAY B W, SON S F, BDZIL J B. The role of gas permeation in convective burning [J]. International Journal of Multiphase Flow, 1996, 22(5): 923–952. DOI: 10.1016/0301-9322(96)00041-9.
|
[7] |
DICKSON P M, ASAY B W, HENSON B F, et al. Observation of the behaviour of confined PBX 9501 following a simulated cook-off ignition [R]. Los Alamos National Laboratory. Los Alamos, New Mexico, United States, 1998.
|
[8] |
SMILOWITZ L, HENSON B F, ROMERO J J, et al. Direct observation of the phenomenology of a solid thermal explosion using time-resolved proton radiography [J]. Physical Review Letters, 2008, 100(22): 228301. DOI: 10.1103/PhysRevLett.100.228301.
|
[9] |
北京工业学院八系. 爆炸及其作用(下册) [M]. 北京: 国防工业出版社, 1979.
|
[10] |
SHANG H L, YANG J, LI T, et al. Convective burning in confined explosive cracks of HMX-based PBX under non-shock initia-tion [C] // 16th International Detonation Symposium, 2018.
|
[11] |
HOLMES M D, PARKER Jr G R, HEATWOLE E M, et al. Center-ignited spherical-mass explosion (CISME); FY 2018 Report [R]. Los Alamos National Laboratory, Los Alamos, New Mexico, United States, 2018.
|
[12] |
HOLMES M D, PARKER JR G R, HEATWOLE E M, et al. Fracture effects on explosive response (FEER); FY2018 Report [R]. Los Alamos National Laboratory, Los Alamos, New Mexico, United States, 2018.
|
[13] |
HU H B, LI T, WEN S G, et al. Experimental study on the reaction evolution of pressed explosives in long thick wall cylinder con-finement [C] // XXI Khariton’s Scientific Readings. Sarov, Russia, 2019.
|
[14] |
MAČEK A. Transition from deflagration to detonation in cast explosives [J]. The Journal of Chemical Physics, 1959, 31(1): 162–167. DOI: 10.1063/1.1730287.
|
1. | 教继轩,白志玲,段卓平,张连生,黄风雷. 考虑壳体运动惯性约束效应的装药燃烧裂纹网络反应演化理论模型. 爆炸与冲击. 2025(03): 13-25 . ![]() | |
2. | 杨天昊,种涛,李涛,傅华,胡海波. 非冲击点火反应驱动的吉帕级缓前沿斜波加载技术. 爆炸与冲击. 2023(06): 152-159 . ![]() | |
3. | Zhuo-ping Duan,Meng-Jing Bai,Zhi-ling Bai,Xin-jie Wang,Feng-lei Huang. Combustion crack-network reaction evolution model for highly-confined explosives. Defence Technology. 2023(08): 54-67 . ![]() | |
4. | 白志玲,段卓平,李治,许礼吉,张连生,黄风雷. 热刺激约束DNAN基不敏感熔铸炸药装药点火后反应演化调控模型. 含能材料. 2023(10): 1004-1012 . ![]() | |
5. | 种涛,莫建军,傅华,郑贤旭,李涛,张旭. 20 GPa斜波压缩下PBX-14炸药的动力学响应. 高压物理学报. 2022(01): 109-114 . ![]() | |
6. | 吴文苍,董新龙,庞振,周风华. TA2钛合金开口柱壳外爆碎片分布研究. 力学学报. 2021(06): 1795-1806 . ![]() | |
7. | 楼建锋,张树道. 炸药装药爆炸反应演化过程和约束影响的数值模拟. 含能材料. 2021(12): 1186-1191 . ![]() | |
8. | 段卓平,白志玲,白孟璟,黄风雷. 强约束固体炸药燃烧裂纹网络反应演化模型. 兵工学报. 2021(11): 2291-2299 . ![]() |